
 Created in 2009 by Microsoft Research under 
the lead of M. Leino

 Dafny is a high level programming language with  
formal verification at its core

 Dafny allows for compilation to other languages 
like C# and Python

 While industry usage is low it has been used by 
Amazon and Microsoft for verification of  
security and validation systems.

Dafny, a programming language unlike any other

 Testing software can show the presence of bugs but not their absence
 Formal verification is a stricter way of verifying correctness of software
 This process is quite tedious to do on paper
 SMT solvers exist to partially automate this process
 Dafny is one such program that uses an SMT solver to verify software 

correctness.

How can Dafny be used to formal verify a key-value store and sorting  
algorithm, which can then be compiled to C# code?

 In-place selection sort was very 
straightforward

 The built-in sequence types helped 
a lot here.

 Dafny was able to verify both the selection sort and key-value
store

 Verifying programs becomes a lot harder the more complex it
gets

 Debugging via partially writing out the proof is often needed.

 The compiler is lacking
 Future research regarding Dafny’s ease of use compard to other tools  

could be conducted to see if Dafny’s lacking compiler can outweigh  
having a native verifier specifically designed for a high-level  
programming language.

Dafny language

Dafny verifier

BoogieZ3

 Introduction

 Research Question

 Background Dafny

 Formal problem description

 Results & Discussion

 Conclusion & Future work

Jeroen Koelewijn 
J.G.Koelewijn@student.tudelft.nl

Supervisors: Benedikt Ahrens, Kobe Wullaert 
 CSE3000 Research Project

 Key-value store was less  
straightforward

 Had to change a lot in order to 
verify it in Dafny

 Beyond a few toy examples, a  
decent understanding of formal 
verification is needed.

 All basic tests passed
 Over 1200 lines of code generated 

for what was ~400 lines of Dafny 
code

 Code is barely readable
 Less than ideal to work with
 Very verbose to work with due to  

how the code is compiled.

1 1
2 2

3 3
4 4

K K K

KK

K

V V V

VV

V

In-place selection sort Key-value store

 get(key) --> valu
 put(key, value
 delete(key) --> value

 all keys in the 
store are always 
unique.

 The contents of the list stays the same
 For every iteration of the algorithm, 

the list is sorted up until the pivot.

Verify

Compile

Test

Compiling to C#
 after verifying compile to C#
 Test functionality of output with 

a few simple tests
 asses code readability.

Dafny

SMT solver intermediate 
layer

