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1. INTRODUCTION

« Continual Learning: Model keeps get-
ting new data from a new distribution or
a new task.

 Plasticity: Model’s ability to adapt to the
changes and keep learning at the same ef-
ficiency level.

Symptoms of the loss of plasticity: dead neu-
rons, saturated neurons, high weight mag-
nitude average.

To remedy loss of plasticity:

Standard Machine Learning methods, such
as standard backpropagation (BP), or L2
regularization (L2)

Shrink and Perturb (SnP)
Continual Backpropagation (CBP)

CBP variations with L2 (CBP+L2) or SnP
(CBP+SnP)

2. UTILITY SCORES

Utility scores evaluate neuron usefulness with
the formula by Dohare et al. [1]:
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Utility score distribution: Binned histogram
with utility scores on the x-axis and their fre-

quencies on the y-axis.
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3. RESEARCH QUESTION

What are the effective utility score distributions for continual learning?

4. SLOWLY-CHANGING REGRESSION

o Input:  xq1..xf X1 Xm -
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« Outputs are generated by a more complex network.
o Flipping bits flip only every T iterations.

Backpropagation L2 regularization
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5. CONCLUSIONS

6. REFERENCES

[1] Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mahmood, and Richard S. Sutton. Loss of plasticity in deep continual

0

Utility score distributions

Shrink and Perturb

Motivation. Previous research has not looked into utility scores and their relation to the algorithm performance.
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o Utility scores and their distributions provide a new angle for analysis of plasticity and an additional explanation for its loss.
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o In general, more evenly distributed utilities with low number of scores close to zero correspond to the algorithms that perform better.
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