To deceive or self-deceive?

Framing Language to Discourage Deception in Diabetes Lifestyle Management Systems

1.Background

Diabetes requires ongoing self-management through sustained lifestyle changes. Diabetes lifestyle management (DLM) tools aim to support patients in this process.

Non-adherence is common, and DLM tools rely on self-reported input from patients, which may be **misleading** or **inaccurate**.

To discourage users from lying, a behavioral intervention can be designed to target the factors that drive deception.

CHIP is a chatbot-based research prototype of a DLM system, extended in this work to explore language-framing interventions.

2. Research question

How does the framing of responses in a diabetes lifestyle management system influence the behavioral drivers behind users' deceptive self-reports?

3. Understanding Behavior

Goal:

Understand what drives deception and poor diabetes self**management** to design interventions that support behavior change.

Method:

Performed a literature review. From the findings, used an intervention design framework, the **Behavior Change Wheel** (BCW), to categorize drivers and align them with effective intervention functions.

Key Findings:

Deception is often a means to protect the self, and has overlapping psychological drivers with poor diabetes self-management.

Figure 1: Psychological drivers of deception and poor diabetes self-management.

Delivered through language framing

communicates an effort

Marina Mădăraș

m.madaras@student.tudelft.nl

Supervised by: Prof. dr. C.M. Jonker, J.D. Top, MSc

6. Pilot Study

A user study was conducted to explore whether response framings influence drivers of deception. This diagram provides an overview of the study's methodology

7. Results

▲ Results are exploratory: Participants: 12 non-diabetic participants LLM: unresponsive in 8/12 interactions (due to the model being overloaded) Reasoner: output sometimes lacked contextual coherence

Empathic: lowest self-image protection, perceived as gentle, non-judgemental; most aligned with hypothesis Affirming: highest self-esteem,

perceived as kind and supportive

Neutral: seen as emotionally flat or impersonal

 Table 1. Average B-RSES (self-esteem scale)
and BIDR-16 (self-image protection scale) scores across conditions. Results are **not** significant, due to small sample size (n=12)and confounding factors.

B-RSES: self-esteem higher score means higher self-esteem

BIDR-16: self-image protection lower score means lower need to protect self-image

Condition	B-RSES	BIDR-16
Empathic	2.16	3.50
Affirming	2.61	4.38
Neutral	1.86	4.14
	Empathic Affirming	Empathic2.16Affirming2.61

8. Future Work

Prototype:

Improve dialogue context-tracking and enhance response planning to enable CHIP to carry out more coherent conversations.

Experiment:

Repeat the study with diabetic patients (approximately 126), using a longitudinal design with pre-, post-, and follow-up phases to assess the effectiveness of language-framing interventions.