
We adapted DistilBERT to do in-
training KD for a CodeGPT model
The study showed potential as it
enabled significant compression
albeit with a slight reduction in
language understanding. 
Different settings could improve
results
Future work might use different
base models, instead of DistilBERT,
or experiment with other settings.

Using large language models for code
completion has grown increasingly popular among
developers.
Due to size and performance reasons, these
models can only operate on servers. This limits
accessibility and can raise privacy concerns.

This study explores compressing these models
using KD to allow for local usage. 

Previous research demonstrated that it is
possible to reduce the size of BERT models for
language tasks.

We show that it can also be applied to CodeGPT¹
models, albeit with a moderate accuracy loss. We
explore why this loss is larger and how to mitigate
it. Lastly, we give an indication that pre-training KD
is preferred over in-training KD. 

AUTHOR
Emil Malmsten
e.l.malmsten@

student.tudelft.nl

INSTITUTE
Delft University of

Technology

SUPERVISORS

Dr. Maliheh Izadi
 ir. Ali Al-Kaswan

RESPONSIBLE PROFESSOR
 Prof. Dr. Arie van Deursen 

EXAMINER
 Prof. Avishek Anand 

CONTRIBUTORS
Lu et al., Codexglue: A machine learning benchmark dataset
for code understanding and generation. CoRR,
abs/2102.04664, 2021.
Radford et al., Improving language understanding by
generative pre-training. 2018. 
Devlin et al., Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.
Sanh et al., DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. October 2019. doi:
10.48550/arXiv.1910.01108.
Jiao et al., TinyBERT: Distilling BERT for Natural Language
Understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 4163–4174,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020. findings-emnlp.372.
Aral de Moor. CodeGPT on XTC. 2023.
Mauro Storti. Leveraging efficient transformer quantization
for CodeGPT: A post-training analysis. 2023.
Dan Sochirca. Compressing code generation language
models on CPUs. 2023.

1.

2.

3.

4.

5.

6.
7.

8.

REFERENCES

The student model learns from the predictions of the
teacher (soft loss) and the ground truth (hard loss) during
the training. 
In in-training KD, the teacher also trains during the
distillation. In pre-training KD it does not.

Pruning, removing unnecessary weights or connections. 
Quantization, converting weights and activation tensors
to have low-bit representations.

GPT² predicts the next word based on the previous
context.
BERT³, predicts a masked word in the middle of a
sentence.

Knowledge Distillation (KD)

Other Compression Techniques

Transformer Models
An ML architecture revolutionizing language understanding
and text generation

PRELIMINARIES

A standard model for layer counts
4,6,8,10, and 12. 
6 alternative models with slightly
different settings, all with 8 layers.
One example is the Pretrained-
Weights model where the student
had pre-trained weights for
predicting code before the
distillation.

Accuracy, Edit similarity (ES). It
measures similarity in strings.
Size, The model size on GPU 
Speed, samples predicted per
second. Seen in the table as inf.

We adapted DistilBERT to be an in-
training KD algorithm for code models. 
We benchmarked: 

Evaluation

METHOD AND SETUP

DistilBERT⁴, Using pre-training KD to get a BERT model for
language a 60% speedup and a 40% size reduction while
retaining 97% accuracy.
TinyBERT⁵, Using other KD techniques to get the model a
60% speedup, and 40% size reduction while retaining 97%
accuracy.

CodeGPT on XTC⁶ used KD and quantization to reduce
model size 15x while preserving a fair amount of accuracy.
MP and PEG PTQ on CodeGPT⁷ used quantization to
compress the model 4x while maintaining nearly all
accuracy.
CodeGPT on Intel⁸ used quantization and pruning to
compress the model down 60% and maintained an
acceptable level of accuracy

Studies on Knowledge Distillation (KD)

Studies on Compressing Code Models
Three studies were conducted simultaneously on compressing
code models, namely:

RELATED WORKS

The student model, using one which is pre-trained
on code yields better results
Different Parameter Selections, such as a lower
temperature or more epochs, could benefit KD on
code models
Pre-training KD, it uses less GPU during training and
results seem better

This study, which was a first attempt, got decent
results and showed which settings could be
changed to improve it further.
MP and PEG PTQ on CodeGPT had an equally
good performance as studies compressing
language models

The benchmarks, ES might is not a perfect metric
Generalizability, All models are not expected to
react the same to KD

Improvements

Efficacy of Compressing Code Models
It shows potential for two reasons:

Threats to Validity

What are the effects of compressing a CodeGPT
model, regarding size, accuracy, and speed, through
the application of in-training Knowledge Distillation?

The results were slightly worse than DistilBERT. 
Compared to baseline, the best model (Pretrained-
Weights) maintained 90% accuracy while being 20%
faster and 25% smaller.
The 12-layer model, same size as the baseline, had 9-
points worse ES. Also, 3 alternative models had higher
ES than it. This indicates that flaws in the method,
rather than the smaller size, holds back performance

RESULTS

DISCUSSION

DISTIL-CODEGPT
DISTILLING CODE-GENERATION
MODELS FOR LOCAL USE

CONCLUSION

INTRODUCTION


