DISTIL-CODEGPT **DISTILLING CODE-GENERATION MODELS FOR LOCAL USE**

What are the effects of compressing a CodeGPT model, regarding size, accuracy, and speed, through the application of in-training Knowledge Distillation?

INTRODUCTION

Using large language models for code completion has grown increasingly popular among developers.

Due to size and performance reasons, these models can **only** operate on **servers**. This limits accessibility and can raise privacy concerns.

This study explores **compressing** these models using **KD** to allow for **local usage**.

Previous research demonstrated that it is possible to **reduce t**he size of **BERT** models for language tasks.

We **show** that it can also be applied to **CodeGPT**¹ models, albeit with a moderate **accuracy loss**. We explore why this loss is larger and how to **mitigate** it. Lastly, we give an indication that **pre-training** KD is preferred over **in-training** KD.

DISCUSSION

Improvements

- The student model, using one which is pre-trained on code yields better results
- Different Parameter Selections, such as a lower temperature or more epochs, could benefit KD on code models
- **Pre-training KD**, it uses less GPU during training and results seem better

Efficacy of Compressing Code Models

It shows potential for two reasons:

- This study, which was a first attempt, got **decent** results and showed which settings could be changed to **improve** it further.
- MP and PEG PTQ on CodeGPT had an equally good performance as studies compressing language models

Threats to Validity

- The benchmarks, ES might is not a perfect metric
- Generalizability, All models are not expected to react the same to KD

PRELIMINARIES

Knowledge Distillation (KD)

- The student model learns from the predictions of the teacher (soft loss) and the ground truth (hard loss) during the training.
- In **in-training** KD, the teacher also trains during the distillation. In **pre-training** KD it does not.

Other Compression Techniques

- **Pruning**, removing unnecessary weights or connections.
- Quantization, converting weights and activation tensors to have low-bit representations.

Transformer Models

An **ML** architecture revolutionizing language understanding and text generation

- **GPT**² predicts the next word based on the previous context.
- **BERT**³, predicts a masked word in the middle of a sentence.

CONCLUSION

- We adapted **DistilBERT** to do intraining KD for a CodeGPT model
- The study showed **potential** as it enabled significant compression albeit with a **slight** reduction in language understanding.
- Different settings could **improve** results
- Future work might use **different base models**, instead of DistilBERT, or experiment with other settings.

RELATED WORKS

Studies on Knowledge Distillation (KD)

- retaining **97% accuracy**.
- accuracy.

Studies on Compressing Code Models

code models, namely:

- accuracy.
- compress the model down 60% and maintained an acceptable level of accuracy

RESULTS

- The results were slightly **worse** than DistilBERT.
- Compared to baseline, the best model (**Pretrained**-Weights) maintained 90% accuracy while being 20% faster and **25%** smaller.
- The 12-layer model, same size as the baseline, had 9**points** worse ES. Also, 3 alternative models had higher ES than it. This indicates that flaws in the **method**, rather than the smaller **size**, holds back performance

Model	Params	Size	Inf.	ES	EM
Baseline	124	510	26	39.1	14.5
12 Layers	124 110	510 450	24 27	30.3 29.5	6.4 6.1
10 Layers					
8 Layers	96	390	31	29.6	6.3
6 Layers	82	340	36	28.7	6.4
4 Layers	68	280	43	27.6	5.9

	 REFERENCES 1.Lu et al., Codexglue: A machine learning benchmark dataset for code understanding and generation. CoRR, abs/2102.04664, 2021. 2.Radford et al., Improving language understanding by generative pre-training. 2018. 3.Devlin et al., Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. 4.Sanh et al., DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. October 2019. doi: 	
	 10.48550/arXiv.1910.01108. 5. Jiao et al., TinyBERT: Distilling BERT for Natural Language Understanding. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4163–4174, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020. findings-emnlp.372. 6. Aral de Moor. CodeGPT on XTC. 2023. 7. Mauro Storti. Leveraging efficient transformer quantization for CodeGPT: A post-training analysis. 2023. 8. Dan Sochirca. Compressing code generation language models on CPUs. 2023. 	

• **DistilBERT**⁴, Using pre-training KD to get a BERT model for language a 60% speedup and a 40% size reduction while

• TinyBERT⁵, Using other KD techniques to get the model a 60% speedup, and 40% size reduction while retaining 97%

Three studies were conducted simultaneously on compressing

• CodeGPT on XTC⁶ used KD and quantization to reduce model size **15x** while preserving a **fair amount** of accuracy. • MP and PEG PTQ on CodeGPT⁷ used quantization to compress the model **4x** while maintaining **nearly all**

• CodeGPT on Intel[®] used quantization and pruning to

METHOD AND SETUP

We adapted **DistilBERT** to be an intraining KD algorithm for **code** models. We benchmarked:

- A standard model for layer counts 4,6,8,10, and 12.
- 6 alternative models with slightly different settings, all with 8 layers. One example is the **Pretrained-**Weights model where the student had pre-trained weights for predicting code before the distillation.

Evaluation

- Accuracy, Edit similarity (ES). It measures similarity in strings.
- Size, The model size on GPU
- **Speed,** samples predicted per second. Seen in the table as inf.

AUTHOR

Emil Malmsten e.l.malmsten@ student.tudelft.nl

INSTITUTE

Delft University of Technology

SUPERVISORS Dr. Maliheh Izadi ir. Ali Al-Kaswan

RESPONSIBLE PROFESSOR Prof. Dr. Arie van Deursen

EXAMINER Prof. Avishek Anand