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How can DGN be efficiently applied to the Active Wake 
Control of windfarms? 

1. How does the learning rate influence the perfor-
mance of DGN when applied to AWC of windfarms? 

2. How does the performance of DGN scale with in-
creasing windfarm sizes? 

3. How can the modelling of directionality in windfarm 
topological features be exploited by DGN to improve 
the windfarm performance? 

2. Research Questions 

Windfarm and Turbine Wake Loss 

Windfarms play an increasingly critical role for renewable 
wind energy production. But their efficiency suffer from 
wake induced power losses. 

· Wakes (Figure 1) are a region of high turbulence and 
low wind speed created when wind passes through a 
turbine. 

· Wake causes downstream turbines to suffer efficiency 
losses. 

 

Active Wake Control (AWC) 

Wake losses can be reduced by yawing upstream turbines 
to steer the wake away from downstream turbines.  Ener-
gy production gains in downstream turbines can outweigh 
the losses in the upstream turbine. AWC is the active yaw-
ing of turbines (Figure 1b). Existing methods include: 

· Model-based classical control → over reliant on accu-
rate system model. 

· Singe Agent Reinforcement Learning (SARL) → wind-
farm size scalability issues due to combinatorial explo-
sion. 

 

Multi-Agent Reinforcement Learning (MARL) 

· One turbine per agent → no combinatorial explosion. 

· Fully cooperative, shared reward (windfarm output). 

Paper Focus: Graph Convolutional Reinforcement Learn-
ing (DGN) [2] 

· Agent graph representation, promote collaboration be-
tween agent and neighbors → Windfarm and turbines 
naturally topological . 

· Windfarm representation have many modelling ap-
proaches and information encapsulation. 

1. Background 

(a) without AWC (b) with AWC 

Figure 1: Turbine wake interaction, image adapted from Dong [1] 

 

 

 

 

Windfarm Graph Representation 

Using edge directionality to model inter-agent information 
flow. Turbines sufficiently spaced  
at 10 rotor diameter lengths apart. 
 

 

 

3. Methodology 

Figure 2: DGN architecture, image from Jiang [2] 

Undirected (DGN):  

· Bidirectional communication 

· All information shared 
 

Directed Upstream (DGN-U): 

· Upstream communication 

· Agent learns about turbines it 
affects. 

 

Directed Downstream (DGN-D): 

· Downstream communication 

· Agent learns about turbines 
that affect it. 

Figure 3: Undirected, upstream directed 
and downstream directed windfarm 

Windfarm Sizes and Layouts  

Figure 3: Undirected, upstream directed 
and downstream directed windfarm graphs. 

 
 

Learning Rate (LR) Experiments: 

· Large LR over and undershoot gradient pre-
venting DGN from converging. 

· Decreasing LR improves learning stability. 

· Small LR converge to the immediate mini-
mum, preventing exploration. 

Windfarm Size Experiments: 

· DGN performance stable as size increase.  

· DQN performance degrades as size increase. 

· MARL advantageous over SARL for AWC 

Graph Directionality Experiment: 

· Upstream better than Downstream for large 
windfarms and vice versa. Further experimen-
tation required to investigate contradiction. 

· Directed and Undirected yield comparable 
performance at each tested size. Additional 
information transfer in DGN not more useful. 

DGN is applicable for AWC to learn useful 
policies, especially at scaled windfarms. 

· Varied action space exploration methodology 
and explore DGN hyperparameters. 

· Explore real windfarm layouts and stochastic 
wind processes. 

· Further investigate directionality modelling 
and dynamic updating of graphs. 

5. Conclusions and Future Works 

Baselines 

Use to benchmark 
DGN performance 

FLORIS [3] 

· Numerical gradient 
based solver. 

· Near optimal solu-
tion. 

Static Yaw 

· All turbines face 
wind. 

· No AWC 

Deep Q-Network
(DQN) [4] 

· Q-network based 
SARL algorithm. 

 

DGN Architecture (Figure 2) 

· Encoder Layer encodes agent state into 
features. 

· Convolutional Layers learn latent fea-
tures in the interactions between encod-
ed agent features. 

· Q Network learns Q function for agent. 

· Each agent has own set of above lay-
ers. 

DGN Performance Impact of Windfarm Size 

DGN Performance Impact of Directionality in Windfarm Graph Representation 

 

 

 

 

4. Results 

Performance Impact of Learning Rate 
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