How Background Influences the Way Practitioners Consider ML Harms

Supervisor: Balayn, A.M.A. Responsible Professors: Gadiraju, U. & Yang, J.

1

References:

INTRODUCTION & BACKGROUND

- Unfairness in machine learning (ML) is a frequent subject of discussion, both, in academia and popular media [1].
- ☐ Recent literature introduced algorithmic solutions to bias in ML [1]. However, there is a disconnect between these solutions and practitioners' needs [2].
- To fill this gap, we aim to study how practitioners perceive fairness and how this is shaped by their background. Therefore our research question becomes: To what extent does background influence how ML practitioners consider ML harms?

METHOD

- In-depth literature review and preparations:
 - □ Elaboration of list of sources of harm in ML.
 - Devising use cases.
 - ☐ Preparing datasets for use cases with harms.
 - Developing Jupyter Notebooks with use cases.
- Empirical study:
 - □ 30 semi-structured interviews.
 - ☐ Participants across 16 countries (see Table 1).
 - □ Diff backgrounds: education, role, country, tech area...
 - Observe how they deal with potential harms.

Practitioner	Technology / Role	Interviewee ID
Student	NA	P5, P9, P10 P11, P12, P13 P18, P28
Developer	Federated Learning Data Scientist Data Engineer ML Engineer IT Assistant Fintech Mobility Recommender Systems	P4 P6, P13, P16 P23, P26, P27 P15 P7 P17 P21, P22, P30 P24 P25
Researcher	Computer Vision Predictive Maintenance Ethics Information Systems Trustworthy AI Medical AI Speech Recognition Cognitive Networks	P8, P14 P1 P2 P3 P10 P19, P20 P24 P29

Table 1. Overview of participants.

FINDINGS & CONCLUSION

- ☐ Different educational backgrounds lead to different data exploration practices.
- Discrepancies in how data should represent the context in which it is used.
- ☐ Failed to find increased ethical sensitivity in students who received ethics training.
- Researchers focus on aspects that practitioners in the industry usually ignore.
- ☐ Practitioners stand against demographic parity.
- ☐ May be useful to use different tools for different backgrounds.

LIMITATIONS & FUTURE WORK

- Ethical sensitivity is not just a trait, risk of false correlation.
- Small sample size and only 2 toolkits used.
- Other techniques as focus groups or questionnaires can also be used.
- ☐ Future work can also:
 - ☐ Study concerns brought up throughout the paper
 - ☐ Devise different tools for different backgrounds

