]
TUDelft

o Hyperledger Fabric: permissioned enterprise blockchain, allows
smart contracts written in general-purpose languages

e Usage: contract automation, transparency and immutability

e Problem: security vulnerabilities in contracts can be exploited; there
is little focus on how contract vulnerabilities can be exploited and
mitigated in current research.

Q: What are some security vulnerabilities in Hyperledger Fabric
smart contracts, and what are their countermeasures?

o How can the vulnerabilities be exploited?
e What is the impact severity?
e How do the countermeasures affect the impact severity?

References

[1] P. Lv, Y. Wang, Y. Wang, H. Wan

contract based on static analysis,”

g, and Q. Zhou, “Potential risk detection system of Hyperledger Fabric smart
yChair, Tech. Rep., 2021

[2] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing safety of smart contracts.” in Ndss, 2018, pp.
1-12

[3] B. Beckert, M. Herda, M. Kirsten, and J. Schiffl, “F¢ ion and verification of Hyper!
chaincode,” in 3rd Symposium on Distributed Ledger Technology (SDLT-2018) co-located with ICF

mal speci

Global variables

var totalAssets = 0
func CreateAsset(id):

Rich queries

Pseudorandom number
generators (PRNG)

3 totalAssets++ 1 func UpdateColorByOwner(color, owner): | func InitLedger():
asset := Asset{ 2 results :=_ctx.GetQueryResults() 2 lotteryNumber :=
5 1D: id, 3 for asset := range results { 3 rand.Int(ctx.GetTimeStamp())
Value: totalAssets / 100} I asset.Color = color ctx.PutState (lotteryNumber)
if IdIsAvailable(id): 5 ctx.PutState(asset)

8 return ctx.PutState(asset)

Listing 1: Pseudocode of the global variables vulnerability.

Global PRNG Rich

variables queries
Base score 8.2 4.3-6.5 5.3
Impact severity high
Attack complexity low low high
Confidentiality low-high
Integrity low high
Availability high

Table 1: The base scores of the vulnerabilities in the Common Vulnerability Scoring
System, with red entries being the highest security risks and green the lowest. Empty
entries indicate no risk for the specific metric.

Global variables

e Must be avoided, impact on availability cannot be lowered
Rich queries

e Preferably only used in read-only transactions

e Design pattern can lower but not remove impact on integrity
PRNG

e Attack complexity can be increased by using

(de-)centralized oracles

Listing 2: Pseudocode of the rich queries vulnerability.

Listing 3: Pscudocode of the PRNG vulnerability.

Global PRNG Rich Open
variables queries source
ReviveCC v v v
Chaincode Scanner v v v
Chaincode Analyzer v v unk. v
Lv et al. [1] v v v
ZEUS 2] unk. unk. unk.
Beckert et al. [3] unk. unk. unk.

Table 2: Overview of compatible analysis tools. Entries marked "¢/" indicate which
vulnerabilities the tool detects, and whether it is open source. Entries with "unk." are
unknown.

e Countermeasures can lower, but not remove, the impact severity

e Global variables can be replaced by safer alternatives, but not rich
queries and (pseudo-)RNG

o Developers need to assess whether the remaining impact severity is
acceptable

e Static code analysis tools are effective at detection, but availability
of tools is lacking



