
We see how most of the times CIs are triggered by changes in the code. Scheduled tests are also popular.
There are many runs triggered by ISSUE_COMMENTs with only 3.55% success rate. We find that this is because
such workflows are configured to trigger on command-like instructions in comments and ignore the rest.

The triggers for CIs that run tests4.1

We do not observe any statistical Pearson significance between frequent testing and the DevOps metrics 
(478 projects analysed; 12 periods of 1 month)

4.2 Effects of Testing frequency on DevOps metrics

4.3 Effects of Code coverage on DevOps metrics

We do not observe any statistical Pearson significance between code coverage and the DevOps metrics 
(15 projects analysed; 12 periods of 1 week)

CI told you
Exploring the role of testing strategies as part of CI pipelines and their impact on DevOp metrics in Open Source projects.
by: Kiril Panayotov contact@zakrok.dev | Supervisor: Shujun Huang Responsible Professor: Sebastian Proksch

 Background

Continuous Integration (CI), has become very popular 
with its promising benefits. [1]

CIs allow for seamless integration of new changes to
software projects by verifying the result against quality
gates.The advantages include but are not limited to
improving the stability, productivity and speed. [2]

2mContinuous Integration

In order to measure performance of projects, practitioners
make use of DevOps metrics. These help justify changes
in the development, work process, use of tools etc.

1mDevOps Metrics

CIs however are built from many steps that perform
different actions, so we are left with one general question

 What components (linting, building, testing, code
coverage) significantly impact DevOps Metrics?

1mMissing piece: which CI strategies to use?

 Methodology

We download the logs from the CI workflow runs that report
on coverage and parse the output to collect code coverage.
Upon learning the template of reporting we automatically
collect the coverage for 11 other points in time.

4mCollection of code coverage

We collect non-fork/archived projects with at least 50 stars
written in Java, Java/TypeScript, Python, C++, C# or PHP;  
at least 100 issues where 75% are labeled.

Further we filtered out projects with low commits and
releases for the last year and lack of test-executing CIs. From
the initial 4097 projects, 476 fitted the criteria.

2mProject selection

Workflows in GitHub are defined by YAML files.

We parse the source files of the workflows and look for steps
that include test suggesting keywords their name or execute
a standard test framework command.

2mDetecting tests in CI

As part of my research group, we created a tool for collect
projects’ issues, releases, workflows and their runs to
calculate test frequency and the chosen DevOps metrics.

7mCI-tool-du and variable calculation

 Matrix: Research Questions

RQ1: What triggers CI workflows that
execute tests in projects?

5s

RQ2: How do changes in testing frequency
within CI relate to shifts in DevOp metrics?

5s

RQ3: What is the effect of code coverage
within CI on the DevOps metrics?

5s

(35.06% success rate)

(66.55% success rate)

(78.23% success rate)

(85.90% success rate)

(83.91% success rate)

(82.65% success rate)

(75.47% success rate)

(65.50% success rate)

(3.55% success rate)

 Conclusion
Due to the lack of statistical significance between Testing frequency and DevOps metrics we suggest limiting the number of unnecessary test
executions on the CI to reduce computational costs and electricity consumption. Further research on the topic with more complex statistical
analysis may uncover more intricate relationships between our metrics and test frequency or code coverage.  

On the other hand, we have explored many interesting ways people execute CI tests on GitHub. We propose exploring how manual triggers for
CI are used in projects and what benefits exist from running tests on CI pipelines with different OSes, CPU architectures, tool versions etc.

[1] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage, costs, and benefits of continuous integration in open-
source projects. In Proceedings of the 31st IEEE/ACM international conference on automated software engineering, pages 426–437, 2016.

[2] Eliezio Soares, Gustavo Sizilio, Jadson Santos, Daniel Alencar Da Costa, and Uir´a Kulesza. The effects of continuous integration on
software development: a systematic literature review. Empirical Software Engineering, 27(3):78, 2022

