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1 INTRODUCTION ——

Finding an optimal regression tree is an
NP-hard problem but recent
algorithmic techniques and hardware
can handle larger datasets.

Several algorithmic techniques
exist to increase scalability for
classification trees [1].
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2 MAIN QUESTION ———

Can the scalability of optimal
regression trees be improved
by adapting methods for
classification trees?
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Figure 1: Example of finding a regression tree from training data

3 RESEARCH METHOD

¢ Show that Mean Squared Error with a penalty for the number

of nodes is "seperable”. (Can be solved independently for
subtrees)

* Implement regression in the STreeD [2] framework with a
regularization term.

* Adapt the specialized depth two algorithm to work for
regression.

¢ Implement lower bounds from a previous paper [3].
o Equivalent Points
o k-Means Equivalent Points

¢ Find a novel upper bound on the contribution of a single
instance for use with the similarity lower bound.

e Compare the runtime to OSRT [3], a state of the art method.
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Figure 2: Evolution of optimal methods.
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4 RESULTS & CONCLUSION

* 12 Datasets are tested on various maximum tree
depths and regularization weights for a reliable
comparison.

* Experiments were run on the DelftBlue
supercomputer.

¢ Experiments show an order of magnitude speed
improvement over OSRT.

* Experiments show the lower bounds are effective in
pruning suboptimal solutions.

* Two improvements to STreeD during development.

* Future work can inspect the performance difference

for datasets with more than 1 million instances.
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Figure 4: Pruning potential of the implemented lower bounds, lower is better
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Figure 3: Number of different trees solved within an amount of time.

Note the exponential axis.
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Figure 5: Time to find a tree as a function of dataset size
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