
Don’t bind yourself to do notation!
Timen Zandbergen1 Responsible Professor: Jesper Cockx1 Supervisor: Luka Miljak1

1EEMCS TU Delft

Background

Refactoring is the practice of changing the code of a program

without changing its observed behavior[1].

Many automated refactorings contain bugs, even in widely used

IDEs[2].

Formal verification is cheaper than traditional methods of

creating high assurance systems[3].

Agda is a proof assistant and programming language, using

dependent types to specify properties[4].

Proof of correctness

3: γ |= L ↓ v → (rmDoEnv γ)|=(rmDo L)↓(rmDoValue v)

γ an environment over Γ

Γ a typing context

L a language construct (Γ ` A)

A some type in the HLL

v some value of type A

Figure 1.The function signature of the proof of correctness. It proves that for any

language construct that reduces to a certain value, the refactored version

reduces to either the same value or a closure with the refactoring applied to it.

The proof of equivalence pre- and post- refactoring. rmDoValue is

needed because closures may have a modified body. rmDoEnv is

needed because a closure could either originate from the environ-

ment outside the refactor, or be constructed within the refactored

program.

Because rmDoEnv and rmDoValue only affect the bodies of closures,

and3 proves that all non-closure values are unaffected by the refac-

toring, the resulting closures are also contextually equivalent.

Example code

Figure 2.Two example functions written in the Haskell-like language

An example function pre- and post- refactoring. These two pro-

grams both return the same value, num 2, but use different con-

structs to go about it.

The representation used is intrinsically well typed, making it impos-

sible to create a construct that has a runtime type error. This is

achieved using de Bruijn representation[5], alleviating the problems

associated with string names.

Key takeaways

Big-step reduction more aligned with proof construction than

small-step reductions.

Environments facilitate cleaner induction.

Closures are modified, meaning an equivalence needs to be

established.

Converting the reduction avoids problems with determinism

and terms.

Future work

Support a larger subset of Haskell.

Support more refactorings, compose them to larger

refactorings[6].

Correct parser and printer rather than modify only AST.

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code. USA: Addison-Wesley Longman Publishing Co.,

Inc., 1999, ISBN: 0201485672.

[2] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov, “Systematic testing of refactoring engines

on real software projects,” in ECOOP 2013 – Object-Oriented Programming, G. Castagna, Ed., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 629–653, ISBN: 978-3-642-39038-8.

[3] G. Klein, J. Andronick, K. Elphinstone, et al., “Comprehensive formal verification of an os microkernel,” ACM

Trans. Comput. Syst., vol. 32, no. 1, Feb. 2014, ISSN: 0734-2071. DOI: 10.1145/2560537.
[4] Agda Development Team, Agda 2.6.3 documentation, 2023. [Online]. Available: https://agda.readthedocs.

io/en/v2.6.3/.
[5] N. de Bruijn, “Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,

with application to the church-rosser theorem,” Indagationes Mathematicae, vol. 75, no. 5, pp. 381–392, 1972.

DOI: 10.1016/1385-7258(72)90034-0.
[6] D. Horpácsi, J. Kőszegi, and S. Thompson, “Towards trustworthy refactoring in erlang,” in Proceedings of the

Fourth International Workshop on Verification and Program Transformation, Eindhoven, The Nether-
lands, 2nd April 2016, G. Hamilton, A. Lisitsa, and A. P. Nemytykh, Eds., ser. Electronic Proceedings in

Theoretical Computer Science, vol. 216, Open Publishing Association, 2016, pp. 83–103. DOI: 10 . 4204 /
EPTCS.216.5.

https://github.com/MetaBorgCube/brp-agda-refactoring-timenzandberge T.Zandbergen-2@student.tudelft.nl http://resolver.tudelft.nl/uuid:e4c7d17f-b4c7-48ac-b1e6-834d82c26dc3

https://doi.org/10.1145/2560537
https://agda.readthedocs.io/en/v2.6.3/
https://agda.readthedocs.io/en/v2.6.3/
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.4204/EPTCS.216.5
https://doi.org/10.4204/EPTCS.216.5
https://github.com/MetaBorgCube/brp-agda-refactoring-timenzandberge
mailto:T.Zandbergen-2@student.tudelft.nl
http://resolver.tudelft.nl/uuid:e4c7d17f-b4c7-48ac-b1e6-834d82c26dc3

	References

