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Background

Refactoring is the practice of changing the code of a program

without changing its observed behavior[1].

Many automated refactorings contain bugs, even in widely used

IDEs[2].

Formal verification is cheaper than traditional methods of

creating high assurance systems[3].

Agda is a proof assistant and programming language, using

dependent types to specify properties[4].

Proof of correctness

3: γ |= L ↓ v → (rmDoEnv γ)|=(rmDo L)↓(rmDoValue v)

γ an environment over Γ

Γ a typing context

L a language construct (Γ ` A)

A some type in the HLL

v some value of type A

Figure 1.The function signature of the proof of correctness. It proves that for any

language construct that reduces to a certain value, the refactored version

reduces to either the same value or a closure with the refactoring applied to it.

The proof of equivalence pre- and post- refactoring. rmDoValue is

needed because closures may have a modified body. rmDoEnv is

needed because a closure could either originate from the environ-

ment outside the refactor, or be constructed within the refactored

program.

Because rmDoEnv and rmDoValue only affect the bodies of closures,

and3 proves that all non-closure values are unaffected by the refac-

toring, the resulting closures are also contextually equivalent.

Example code

Figure 2.Two example functions written in the Haskell-like language

An example function pre- and post- refactoring. These two pro-

grams both return the same value, num 2, but use different con-

structs to go about it.

The representation used is intrinsically well typed, making it impos-

sible to create a construct that has a runtime type error. This is

achieved using de Bruijn representation[5], alleviating the problems

associated with string names.

Key takeaways

Big-step reduction more aligned with proof construction than

small-step reductions.

Environments facilitate cleaner induction.

Closures are modified, meaning an equivalence needs to be

established.

Converting the reduction avoids problems with determinism

and terms.

Future work

Support a larger subset of Haskell.

Support more refactorings, compose them to larger

refactorings[6].

Correct parser and printer rather than modify only AST.
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