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Experiment 0: Small Grid World with Two Terminal StatesInverse Reinforcement Learning (IRL)

Cognitive Biases

Loss aversion

Research Question: To what extent can IRL learn
rewards from expert demonstrations with loss

and risk aversion?

Simulating and Interpreting Expert Demonstrations

Models and Theories that will be used

Expert Cognitive Model1.

2. Maximum Entropy IRL algorithm (MEIRL)

System 1 and 2 Model

Subjective Reward Assesment of R1

Subjective Probability Assesment of P1

Final Expert Decision making  [7]

Application of MEIRL [9]

cognitive control cost representing
mental effort needed to deviate from
System 1's optimal course of action

Calculate state visitation frequencies of the expert  SVF            according
to expert trajectory samples generated from policy adhering to                  
Initialize guessed rewards per state arbitrarily
Compare                   with the SVF generated by inferred reward, gradient
Update according to gradient and repeat until convergence

A
agent

= -4.0
= 4.0

very small
reward = 2

System 1 and 2 rewards = R1, R2, 
System 2 is assumed to have a perfectly rational view of the world with
known rewards received with certainty while R1 is received with a probability
P1. This is a strong assumption made to observe System 1 effects in isolation.
Additionally System 1's view of the environment is  reevaluated through
Prospect Theory filter before use.
At every point, the decision is a compromise between the two systems.

Background1. Methodology2. Experiments and Results3.

Conclusions4.
Limitations

In reinforcement learning an agent interacts with the
environment through different actions and learns the
optimal behavior (policy) observing obtained rewards. [1]
Reward function is often hard to define precisely.
IRL aims to learn reward function from expert
demonstrations which are collected from humans. [6]

Humans deviate from rationality in systematic ways
called cognitive biases. [2] [3]
Many cognitive biases are effective but the main
focus of this research is group of biases that affect
attitudes towards risk and uncertainty.

Tendency to overweight losses : the pain of losing is
much higher than pleasure of gaining something of same
utility. [2] [3]
Avoiding losses at the expense of rewards, leading to risk
averse behavior. However leading to high risk decisions
to avoid further losses is also possible. [8]

Prospect Theory

They have different utility
functions and perceptions,
System 1 is more intuitive,
uses shortcuts while System
2 plans more long term and is
less impulsive

Treats losses and gains
asymmetrically,
overestimates low probability
events and underestimates
high probability events

For a set of demonstrations there are infinitely many fitting
reward functions. Using the principle of maximum entropy,
MEIRL finds the solution with the least amount of bias. [9]

objective reward for
System 1's preferences

represents diminishing
sensitivity to gains and
losses

, baseline that the
agent compares
new rewards against

degree of
loss aversion

degree of over-weighting of small and
under-weighting of large probabilities

decision weight

objective probability of
receiving this reward

Pass R1 and P1 through Prospect Theory filter and multiply to get RP1
Perform value iteration on RP1        to get the most optimal actions for
System 1 preferences at each decision point. Call this V1*
Initialize V1 and V2 arbitrarily (value iterations for System 1 and 2)
At each decision point (state) choose compromise action and find:
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System 1 Rewards and Probabilities
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System 2 Rewards

reward = 10 

Joint Value Iteration

Expert Trajectories
(200 Samples)

Agent Trajectories and Inferred Reward Comparison with actual
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Limited nature of the MEIRL algorithm: MEIRL only
considers trajectories and assumes decision making is
fairly static.
No actual human data was collected. Therefore we only
simulate the cognitive bias we believe exist and test for
them.
More complex environments, tasks and agent models
would be more realistic but introduce more complexity and
require different search techniques.

Loss aversion and risk aversion significantly impact the subjective reward
and decision weights, leading to a gap between expert demonstrations and
the optimal objective rewards.
The expert agent avoids negative outcomes losing on rewards, resulting in a
lower overall sum of total rewards.
The IRL agent's System 1 rewards closely follow the expert, although System
2 rewards change. But at very high risk System 1 rewards are also different.
While the expert agent keeps a balanced reward profile, the IRL agent does
not differentiate, especially when the punishment is more likely. This is
expected as the IRL agent does not know there are two different reward
functions and can only see the end behavior.
The most significant gap between expert and IRL is caused by cognitive
control, because this is a factor that plays a dynamic role

The most significant gap between expert and IRL is
caused by cognitive control, because this is a factor
that plays a dynamic role.
Because of the expert's hesitancy it ends up
collecting even further negative punishment than it
needs for getting to the reward.

Although the IRL agent can  make similar trajectories, it
cannot infer any underlying motivations or relations
between them. This is expected from MEIRL, thus more
sophisticated models needed. 
The agent is not very consistent, especially when faced
with a lot of options. More careful environment planning is
needed.
It is important to study IRL with cognitive biases to not
consider expert as optimal as it can cause loss of nuance
or even the main goal of the agent.


