
Property-Based Testing in Open-Source Rust Projects
A Case Study of the proptest Crate Antonios Barotsis

Supervisors: Dr. Andreea Costea, Sára Juhošová
EEMCS, Delft University of Technology, The Netherlands

Summary
Testing is a critical part of software development, especially in
popular Open Source Software [1] (OSS). Property-Based
testing (PBT) has emerged as an easy yet powerful new testing
technique. We aim to gain insights on how the leading PBT
framework proptest is used in the Rust ecosystem.

1. What is PBT?
Here’s an example which verifies that reversing a list twice
should give us the original list:

1
2
3

4
5
6
7
8
9

10
11

proptest! {
 #[test]
 fn pbt(list in any::<Vec<i32>>()) {
 🛈: Use generator to get random input
 let mut reversed = list.clone();
 reversed.reverse(); // reverse once
 reversed.reverse(); // reverse twice

 // Assert reversing list twice == initial list
 assert_eq!(list, reversed);
 🛈: Failing test inputs automatically shrunk
 }
}

• Generators generate hundreds of random inputs for our test.
• Upon encountering a failing test, the PBT framework tries to

shrink the failing input. In other words, simplifying it to the
smallest form that still reproduces the failure.

2. How is it used in OSS?
Our research questions expand upon the following:
• Properties

1. What type of properties do PBTs generally check?
2. What do these properties look like?
3. What role does PBT play within the correctness guarantees

and bug-finding strategies of the project overall?
• Generators and Shrinking:

1. How and when are generators implemented?
2. In which cases is shrinking support explicitly added?

3. Our methodology

1 repos = proptest.dependents.sorted_by(total_downloads)
2 for repository in repos:

3
Gather descriptive project metadata (size, amount of tests,
amount of PBTs, downloads etc)

4 Analyze each PBT individually

References
[1] M. Hoffmann, F. Nagle, and Y. Zhou, “The Value of Open Source

Software,” SSRN Electronic Journal, 2024, doi: 10.2139/ssrn.4693148.

4. Results
We explored 16 repositories using proptest and analyzed 143
tests, here’s what we learned:

1. Property Types: Most PBTs used TestOracles.

2.8%

52.4%

16.1%

21%

2.1%

5.6%

Assert internal struct validity
Behavior consistent with test oracle
Parser correctness

Type (de)serializes correctly
Type converts back and forth correctly
Other

Figure 1: PBT Category Breakdown
2. Complexity: tests are kept simple. Only two assertions per

test, 87% of properties are non-decomposable.
3. Generators & Shrinkers: 74% of our examined projects

make use of custom generators, yet none implement custom
shrinkers!

We also gained some insights that apply to the Rust language
as a whole:
• Rust’s type system largely handles invariants → no need to

test for them.
• Specialized tools/frameworks are used to test for undefined

behavior and concurrency rather than PBT.
• Rust’s “doctests” are used to document code, a role

oftentimes filled by PBTs in other languages.

tokionom

toml_edit
winnow

prost

sharded-slab

anstream

anstyle-parse

prost-types
der

const-oid
arc-swap

base64ct

pem

console

crypto-bigint

0

20

40

60

80

2016 2018 2020 2022
First Release Date

N
um

be
r o

f P
BT

s

Amount of PBTs20 40 60
Projects with ≥10 PBTs are inbold

Figure 2: First Release Date vs Amount of PBTs

https://doi.org/10.2139/ssrn.4693148

