
EM Edit Sim BLEU-4 ROUGE-L
METEOR

TS1K-18 TS1K-18-E TS1K-22

1.25

1

0.75

0.5

0.25

0

Machine Learning is increasingly common for
code completion.
Great strides have been made - single tokens,
but also entire lines and code blocks can be
predicted with relatively high accuracy.

Providing more information to code completion
models, such as type annotations and
comments, might help these models to
understand the code better, which can improve
code completion.

This study aims to answer whether UniXcoder
[1] is able to use type annotations and
comments to improve code completion
performance.

01 Introduction
The TypeScript models outperformed
the JavaScript models on every metric,
but margins were small.

TypeScript models trained on TS1K-18-E,
which contains the highest amount of
type annotations, outperformed
JavaScript models by a larger margin
than TypeScript models trained on other
datasets (figure 1).

Models trained only singleline comments
or only multiline comments often did
better than models trained on all
comments (figure 2). However, the
results are not consistent, and future
work needs to confirm how well
comments contribute to performance.

03 Results

The outperformance by TypeScript models
on all metrics suggests a positive effect
on code completion as a result of type
annotations. The outperformance growing
when more types are present strengthens
this.

Restricting comments to only a certain
type may help results. But results marginal
and not completely consistent

Future research is required to confirm
whether the inconsistent results regarding
comments are caused by comment
contents, or whether it shows that
comments do not contribute much to
language understanding.

04 Conclusion

An Empirical
Analysis on
the
Performance
of UniXcoder
Tim van Dam

Supervisor Maliheh Izadi
Professor Arie van Deursen
Advisor Georgios Gousios

UniXcoder is trained on three TypeScript
datasets based on the most popular GitHub
repositories: TS1K-18, TS1K-18-E and TS1K-22.

The datasets contain different amounts of type
annotations: 48.66%, 87.74%, and 45.79% of
the maximum amount of type annotations
possible were present in the datasets.

UniXcoder is trained on TypeScript and
JavaScript. JavaScript is generated from
TypeScript using the TypeScript compiler.

Every dataset is trained on multiple times:
once with all comments, once without any
comments, once with only singleline
comments, and once with only multiline
comments.

Finally, the models are tasked to complete
lines of code, and are evaluated by measuring a
number of metrics on their predictions: Exact
Match, Edit Similarity, BLEU-4 [2], ROUGE-L
 [3] and METEOR [4].

02 Methodology

[1] Guo et al. (2022). UniXcoder: Unified cross-modal pre-training
for code representation
[2] Papineni et al. (2002). BLEU: A method for automatic evaluation
of machine translation
[3] Lin. (2004). ROUGE: A package for automatic evaluation of
summaries
[4] Banerjee et al. (2005). METEOR: An automatic metric for MT
evaluation with improved correlation with human judgements

05 References

Figure 1
TypeScript Performance relative to

JavaScript Performance 1

TS Singleline TS Multiline
JS Singleline JS Multiline

TS1K-18 TS1K-18-E TS1K-22

0.8
0.6
0.4
0.2

0
-0.2
-0.4

Figure 2
EM performance on Singleline Comments /

Multiline Comments vs All Comments

