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How is the failure probability of the protocol affected by “leakage” errors?
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• Qubits: 
• superposition of classical states 0 and 1.
• ∣ψ⟩=α∣0⟩+β∣1⟩.

• Entanglement: 
• 2+ qubits become correlated in a way that 

the state of one determines the state of the 
others.

• Non-separable, it cannot be written as 
combination of different states.

• Enables quantum communication.
• Quantum Gates:
• Operations to manipulate qubits.
• We can build circuits and use them to 

generate entangled multi-qubit states.

2. Quantum Computing

1. Motivation & Problem

• Quantum networks enable applications like 
secure communication and distributed 
computing [5].

• Byzantine Agreement Protocols (BAP) ensure 
consensus despite faulty/malicious parties [4].

• Quantum BAPs can tolerate up to t < n/2 faulty 
nodes, outperforming classical t < n/3 where n is 
the number of participating parties [3].

• We investigate the impact of leakage errors on 
the Weak Broadcast (WBC) protocol [2, 3].

4. Leakage Errors & Bit-Flip Noise Model

5. Analytical Analysis of the Bit-flip Model

7. Conclusion
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3. WBC(3, 1) Protocol Overview

• The sender prepares a 4-qubit entangled state and 
chooses a bit value (0 or 1).

• The sender measures the first 2 qubits. If both 
match the chosen bit, the round is added to the 
check set.

1) Invocation Phase: After m rounds, the 
sender sends the bit value and check set to 
both receivers.
2) Check Phase: Each receiver checks if the 
check set has elements above a threshold T 
and that all their measurements differ from the 
sender’s bit.
3) Cross-Calling Phase: Receiver R₀ sends 
its decision and check set to R₁.
4) Cross-Check Phase: R₁ accepts R₀’s 
decision only if:
• R₁’s own result is different from R₀’s result,
• R₀’s check set has size ≥ T,

Different Faulty Configurations of the Protocol:

• No-Faulty: All parties are honest.
• If S, R₀, and R₁ agree on either 0 or 1 → Success ✅
• Otherwise → Failure ❌

• S-Faulty: Sender sends different bits to R₀ and R₁.
• If R₀ and R₁ agree → Failure ❌
• Otherwise → Success ✅

• R₀-Faulty: R₀ accepts the wrong bit and sends a forged check set to R₁.
• If S and R₁ agree on the bit → Success ✅
• Otherwise → Failure ❌

6. Results & Discussion

• Leakage Errors:
• Out of 16 possible basis states, only 6 are useful in the protocol.
• Leakage occurs when the outcome deviates to one of the 10 unintended 

basis states.
• Modeling:

• Two approaches considered:
• Bit-flip Model (applies bit flips after measurement).
• Kraus Operator Model (applies noise before measurement).

• We chose the Bit-flip Model because:
• It is more transparent.
• It allows better control over the error probabilities.

• Bit-flip probability definitions:
• p0 → probability of incorrectly measuring a qubit in state |0⟩ as |1⟩.
• p1 → probability of incorrectly measuring a qubit in state |1⟩ to |0⟩.

• Simulator: SquidASM (built on NetSquid)
• Our noise-free results match the results from 

Figure 4 from Guba et al. [3]
• Simulation details:

• Number of entangled states: m ∈ [20, 400]
• Monte Carlo trials per m: N = 100
• Bit-flip probabilities derived from the fidelity 
values reported by the NetSquid paper [1]:
 – p₀ = 0.05

  – p₁ = 0.005 

Error bars show the standard error of Bernoulli trials:
SE = √(p × (1 − p) / N)

No-Faulty Configuration:
• Failure probability increases with m.
• Bit-flip model results are less pessimistic than 

Guba et al.’s assumptions [3].

S-Faulty Configuration:
• Slight decrease in failure under leakage noise.
• Aborts are counted as successful outcomes.
• Leakage disrupts sender’s ability to deceive both 

receivers.

R₀-Faulty Configuration:
• Failure probability increases with m.
• Bit-flips act similarly to the no-faulty case and bit-

flips in R₁ measurements help R₀ deceive.
• Our setup always sets sender’s bit to 0, which 

slightly reduces failures due to asymmetry in 
readout fidelity.

• Our custom bit-flip model shows less pessimistic 
outcomes than Guba et al. [3].

• WBC(3,1) is not resilient to realistic measurement 
noise.

8. Future Work
• Why does the Kraus Operator Model produce 

different trends compared to the Bit-flip model?
• Can we redesign WBC(3,1) to be more robust to 

hardware noise?

• We derived a formula for the failure probability under bit-flip noise for the no-
faulty configuration.

• Failure occurs due to:
• Check set being too small (violates the length condition).
• Harmful inconsistencies in the check set (violates the consistency condition).

3. WBC(3, 1) Protocol Overview

Figure 1: Preparation circuit for the four-qubit state used in WBC(3,1) based on the Loop
Circuit from Guba et al. [3]

Figure 2: The four-qubit entangled state used in WBC(3,1).

Figure 3: Illustration of the three parties involved in the 
WBC(3,1) protocol: Sender S, Receiver R0, and Receiver 
R1.

• R₁’s measurements contradict R₀’s bit in most of the check set. 

Figure 4: The overall theoretical failure probability under asymmetric measurement noise when the sender’s 
bit is 0.

Figure 5: Simulation results under bit-flip model: no-faulty, S-faulty, and R0-faulty configurations.


