
Author: Jeffrey Meerovici (J.G.MeeroviciGoryn@student.tudelft.nl)
Supervisors: Mathijs de Weerdt, Kim van den Houten, Léon Planken

Evaluating Dynamic Scheduling Strategies for a Multi-Mode RCPSP/max
Problems with generalised time-lags/no-wait constraints

01. Background information
Dynamic Constraint programming: Constraint
programming with stochastic durations.

The RCPSP: Find a schedule given a set of tasks and
resource constrains. NP-hard

The Multi-Mode RCPSP/max with generalised time-
lags/no-wait constraints extend RCPSP by:

Multi-Mode: Multiple execution modes per task
each with different durations and resource
requirements.
Generalised time-lags constraints:

Start of task A + lag ≤ start of task B
Start of task A + lag ≤ end of task B
End of task A + lag ≤ start of task B
End of task A + lag ≤ End of task B

No-wait constraint: End of task A = Start of task B

Algorithms to compare for stochastic scheduling
problems:

Proactive approach: Creates a solution offline
anticipating uncertainty. Uses the upper bound of
the duration to create the solution.
Reactive approach begins with an offline solution
and modifies it during execution.
STNU: create a STNU from model and solve it.

02. Research Question

Which dynamic scheduling algorithm (reactive, stnu or
proactive) is best for solving an instance of a multi-
mode RCPSP/max with generalised time-lags/no-wait
constraints problem when evaluating the solution's
quality, the computation time before the execution, and
the computational time during the execution?

Figure 1: Precedence graph and Gantt chart of a solution of a small RCPSP/max
Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Solving
RCPSP/max by lazy clause generation. Journal of Scheduling, 16(3):273–289, June
2013.

03. Methodology
Modelling the problem:

Use pre-existing instances of deterministic multi-
mode RCPSP problems
Modify the instances to include generalised time-
lags and no-wait constraints.
Model the instance using PyJobShop modelling

Adding uncertainty to a solution:
Solve the model
Simulate stochastic duration using the modes’
deterministic duration as mean and noise factor
as variance.

Try to solve the instance using proactive, reactive and
STNU algorithms.

Metrics for comparison:
The quality of the solution
The computation time before the execution
The computational time during the execution

04. Feasibility rates
Problem with all constraints

Problem without start-to-end and
end-to-end constraints

03. Comparison tests
Wilcoxon:

Strong
Only needs one of the algorithms finding a
solution; Affected by feasibility
Represented by bold lines in Partial ordering

Proportion:
Weak
Only needs one of the algorithms finding a
solution; Affected by feasibility
Represented by dash lines in partial ordering

Magnitude
Strongest
Needs both algorithms to find a solution; Not
affected by feasibility but low matches
Not part of partial order due to low matches

06. Discussion and Conclusion
Makespan:

Reactive and STNU outperform proactive with
magnitude test
Magnitude test inconclusive between reactive and
STNU

Offline time:
Reactive and proactive mostly equal
STNU considerably worse

Online time:
Proactive is the fastest
Magnitude test shows STNU beating reactive by a
big margin

07. Future work
Allowing precedence constraints between modes
Limiting mode selection due to precedent task
Allowing the mode of tasks to change
dynamically during reschedules
Giving all tasks an independent noise factor

Problem without start-to-end and
end-to-end constraints

Solution quality:

Solution quality:

Offline time:

Offline time:

Online time:

Online time:

05. Results of the comparison tests

Problem with all constraints

