Evaluating Dynamic Schedulin%
Problems with generali

Author: Jeffrey Meerovici (J.G.MeeroviciGoryn@student.tudelft.nl)
Supervisors: Mathijs de Weerdt, Kim van den Houten, Léon Planken

01. Background information

Dynamic Constraint programming: Constraint

programming with stochastic durations.

The RCPSP: Find a schedule given a set of tasks and
resource constrains. NP-hard

The Multi-Mode RCPSP/max with generalised time-
lags/no-wait constraints extend RCPSP by:
e Multi-Mode: Multiple execution modes per task
each with different durations and resource
requirements.
e Generalised time-lags constraints:
o Start of task A + lag < start of task B
o Start of task A + lag < end of task B
o End of task A + lag < start of task B
o End of task A + lag < End of task B

e No-wait constraint: End of task A = Start of task B

Algorithms to compare for stochastic scheduling
problems:

* Proactive approach: Creates a solution offline
anticipating uncertainty. Uses the upper bound of
the duration to create the solution.

* Reactive approach begins with an offline solution
and modifies it during execution.

* STNU: create a STNU from model and solve it.

02. Research Question

Which dynamic scheduling algorithm (reactive, stnu or
proactive) is best for solving an instance of a multi-
mode RCPSP/max with generalised time-lags/no-wait
constraints problem when evaluating the solution's
quality, the computation time before the execution, and
the computational time during the execution?

03. Methodology

Modelling the problem:
e Use pre-existing instances of deterministic multi-
mode RCPSP problems
* Modify the instances to include generalised time-
lags and no-wait constraints.
* Model the instance using PyJobShop modelling

Adding uncertainty to a solution:
e Solve the model
e Simulate stochastic duration using the modes’
deterministic duration as mean and noise factor
as variance.

Try to solve the instance using proactive, reactive and
STNU algorithms.

Metrics for comparison:
e The quality of the solution
e The computation time before the execution
e The computational time during the execution

03. Comparison tests

e Wilcoxon:
o Strong
o Only needs one of the algorithms finding a
solution; Affected by feasibility
o Represented by bold lines in Partial ordering
* Proportion:
o Weak
o Only needs one of the algorithms finding a
solution; Affected by feasibility
o Represented by dash lines in partial ordering
e Magnitude
o Strongest
o Needs both algorithms to find a solution; Not
affected by feasibility but low matches
o Not part of partial order due to low matches

04. Feasibility rates

Problem with all constraints

Number | Noise factor 1 | Noisc factor 2

of tasks | pro react STNU | pro react STNU
10 | 0245 025 0213 | 0208 0229 0.201
20 [0,041 0.038 0021 | 0.044 0.042 0.036

Problem without start-to-end and
end-to-end constraints

Number | Noise factor 1 | Noise factor 2

oftasks | pro rcact STNU | pro rcact STNU
10 | 1.000 1.000 0113 | 1.000 1.000 0073
20 | 1.000 1.000 0015 | 1.000 1.000 0.008

05. Results of the comparison tests

Problem with all constraints

Solution quality:
Reactive —— Proactive
Nojse faétz};;* STNU

Offline time:

Smaller instances

Proactive STNU

-

Online time:

Reactive

Proactive STNU Reactive

Problem without start-to-end and
end-to-end constraints

Solution quality:
Proactive —— STNU

Reactive

Offline time:
Proactive

> STNU

Reactive —

Online time:

Proactive—>Reactive—=STNU

Strategies for a Multi-Mode RCPSP/max
sed time-lags/no-wait constraints

06. Discussion and Conclusion

Makespan:
e Reactive and STNU outperform proactive with
magnitude test
e Magnitude test inconclusive between reactive and
STNU

Offline time:
e Reactive and proactive mostly equal
e STNU considerably worse

Online time:
e Proactive is the fastest
e Magnitude test shows STNU beating reactive by a
big margin

07. Future work

e Allowing precedence constraints between modes

e Limiting mode selection due to precedent task

e Allowing the mode of tasks to change
dynamically during reschedules

e Giving all tasks an independent noise factor

-6 0 2 4 6

Figure 1: Precedence graph and Gantt chart of a solution of a small RCPSP/max
Andreas Schutt, Thibaut Feydy, Peter]. Stuckey, and Mark G. Wallace. Solving
RCPSP/max by lazy clause generation. Journal of Scheduling, 16(3):273-289, June
2013.

