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Background

-xperiments and Results

Understanding personal
values is essential for the
creation of value-aligned
artificial agents that can
operate among us.

Tweets are a natural

Why did the model predict
Y given input X?

| T Output
Ml B|ock box (el

Why do we need interpretability?

e Better models and less bias

environment where
people express their
thoughts.

L

e More accountable ML systems
e More trust in ML systems ]

Methodology

MFTC Dataset

'/ corpuses

ALM | BLM | Elections | Davidson | Sandy | MeToo | Baltimore

35k annotated tweets

3-8 annotators, moral values or non-moral label

5 moral foundations

Care-Harm | Fairness-Cheating | Loyalty-Betrayal
Authority-Subversion | Purity-Degradation

Model training

LSTM BERT

Bidirectional Faster text
Transformers

arhitecture

Recurrent
neural network

arhitecture similar results

Goal: Compare the three models
based on their interpretability

Interpretability analysis

Experiment 1: Performance
Q: How accurate/reliable are the

predictions?

Experiment 2: Input data
Q: What kind of data does the system
learn from?

Experiment 3: Embeddings
Q: How does the model extract
features from the data?

FastText Experiment 4: Feature Attribution

Q: What instance feature leads to the

classification with system’s prediction?

Experiment 5: Counterfactuals
Q: What would the system predict if
this instance feature changes to... ?
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