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Research Question: 

How do coding approaches for solving Machine Learning problems of computer science students differ compared to students 

without a computer science background? 

Sub-questions: 

• Is there a statistically significant difference in code metrics in the solutions of computer science students versus students 

with no computer science background? 

• Can the coding practices of computer science students in machine learning be reliably distinguished by using coding 

metrics? 

• Are there observable differences in comments and readability, between the machine learning code produced by 

computer science students and those without a computer science background? 

1 Background 

The field of Machine Learning is rapidly expanding across disciplines, which is creating demand to teach it to people 
with diverse educational backgrounds 

Computer Science students naturally engage with Machine Learning, but teaching Machine Learning to non-Computer 
Science students 

Previous research has not focused on the difference in approach between CS and non-CS students but rather: 

Discovering preconceptions and learning barriers of non-CS students 

Exploring different approaches and technologies to use when teaching ML 

Teaching ML concepts is challenging due to diverse student programming backgrounds. 

This research aims to compare code solutions of two student groups to provide insights that may help in   improving Ma-
chine Learning education strategies 

2 Methodology 

The data is provided and anonymized by TU Delft, the CS students’ assignments are from a bonus assignment 
they completed during their ML course, while the non-CS students’ assignments are from a mandatory assignment 
during a minor 

A program is developed that automatically analyzes the code using the following metrics 

1. Lines of code 

2. Number of functions 

3. Number of function calls 

4. Number of attributes 

5. McCabe’s cyclomatic complexity 

6. Percentage of comments 

These metrics are gathered from previous research and are mostly used for large projects, but they were adapted 
for smaller projects, focusing on code quality and computational thinking skills. 

Common methods: Lines of code, number of functions, number of attributes. 

Measures of quality: Cyclomatic complexity, comment percentage. 

Computational thinking: Number of code cells, number of markdown cells, mean lines per code cell, mean words 
per markdown cell, number of markdown words, number of function calls. 

A statistical analysis on the collected metrics is performed to determine correlation and statistical significance using 
confidence intervals, t-tests and Cohen’s d 

7.   Number of code cells 

8.   Number of markdown cells 

9.   Mean lines per code cell 

10. Mean words per markdown cell 

3 Results 
The graph below shows bar graphs for each metric with a confidence intervals of 95%. A closer look at each metrics is required to get an overall understanding 

Comment Percentage: Non-CS students consistently have a higher 

comment percentage, but the difference is not significant. 

Mean Lines in Code Cells: Both groups show similar mean lines per 

code cell, suggesting no significant difference. 

Number of Markdown Cells: Significant variation observed, potentially 

due to different teaching approaches across years. 

Number of Attributes: CS students consistently have more attributes, 

with a large confidence interval in 2023-2024 due to potential notebook 

processing errors. 

Number of Words in Markdown Cells: Significant difference in 2022-

2023, indicating non-CS students might explain their processes in more 

detail. 

Number of Lines of Code: Increasing trend for both groups, with non-

CS students coding more verbosely. 

Number of Code Cells: Similar to lines of code, an increasing 

trend, with non-CS students showing a significant difference in   

2023-2024. 

Cyclomatic Complexity: Overlapping confidence intervals, no 

significant conclusions drawn. 

Mean Words in Markdown Cells: Irregularity in data, 2022-2023 

as an outlier, suggesting similar metrics for both groups. 

Number of Function Calls: Non-CS students significantly have 

more function calls, possibly influenced by previous class content. 

Number of Functions: Counterintuitively, CS students have more 

functions, but values are low for both groups. 

There are 12 instances of a significant p-value 

(<0.05), with no metric having a significant           

p-value across all 3 years. 

Relevant results include significant p-values for 

the number of functions and number of attributes 

for two consecutive years, indicating potential 

differences in algorithmic thinking. 

The number of markdown cells also shows 

significant p-values, suggesting a tendency for 

students to explain their processes. 

Significant p-value for the number of function 

calls indicates consistent usage by one group, 

likely involving library functions. 

 

While most differences are not significant, 

noteworthy variations in attributes, functions, 

and markdown cells suggest potential 

distinctions in algorithmic thinking and 

explanation approaches between CS and non-

CS students. Further investigation is needed to 

explore the reasons behind these trends. 

4 Conclusion  

Analyzing 60 ML assignments from the two student groups answers the research questions such that Computer 
Science students exhibit more modular thinking, creating variables for cleaner and reusable code, however, the 
values of other metrics showed no significant differences. 

For the first and second sub-questions, the results show that there are rarely statistical differences in the metrics, 
meaning that one could not reliably distinguish the previous knowledge of a student based on their assignment. The 
answer to the third sub-question is no, because the comments and markdown cells for both groups do not have a 
significant difference. 

To enhance the study's robustness, several considerations for future work are proposed: 

● Diverse Dataset: Inclusion of submissions from different institutions and time frames, while ensuring 
assignment consistency, would provide a broader perspective on how students with varied backgrounds 
approach ML assignments. 

● Qualitative Analysis: Introducing qualitative analysis, such as student interviews, could provide a deeper 
understanding of their coding approach and reasoning. 

● Controlled Experiments: Implementing controlled experiments, where students solve problems under 
observation while explaining their thought process, would offer a more detailed insight into how different 
backgrounds influence problem-solving approaches. 

5 Future work 

Building upon the results of the study, there are several opportunities 

for further research. 

• A Comparative analysis of ML assignments: An analysis of 

guided assignments, such as the ones in this paper, versus 

open-ended projects, which could highlight and improve the 

students computational thinking.  

• Exploration of prerequisite courses: It would allow instructors 

to determine which knowledge from the courses applies to ML, 

and could be used to help tailor teaching methods and course 

content for students with different backgrounds. 

• Exploration of collaborative learning: It would examine the 

effect of students of various backgrounds working on 

assignments together, investigating whether students with 

varying academic backgrounds could mutually positively affect 

their understanding of ML concepts and coding practices. 


