Maybe a List would be better?: Correct CSE3000 Research Project
. . José Carlos Padilla Cancio (j.c.padillacancio@student.tudelft.nl)
by construction Maybe to List

Responsible Professor: Jesper Cockx | Supervisor: Luka Miljak 1
refactorings in a Haskell-like language TUDelft

1. Introduction 2. Objectives

e Functional languages have referential transparency, i.e. expressions 1. “Define a Haskell-like Ianguage in Agda”
correspond to a single value

: : 2. “Write the refactorings of Maybe to List and formally verify its correctness”
e Dependently typed languages, a form of functional programming, allow

you to write and verify proofs using their type checker.
e You can have your cake and eat it too! Write your function and formally

Pl s 3. Current work :
e Goal of this RP is to apply this to refactorings in a Haskell Like Language Refactoring

(HLL) using the dependently typed language Agda [1] Language Design choices e Intrinsic typing
e Intrinsically-typed language o Refactoring function is proof of well-typedness
o Define type system and syntax at the same time e Refactoring introduces new additions to
: Maybe Int -> Maybe Int -> Maybe Int afe- : [Int] -> [Int] -> [Int] e De BrUijn indices Environment/Context
SR oo 4 Sl BN g R Rt o Variable references are all unique o Use Extend_Under data type to keep track of
= 5 W l ediv . _ =] e Big step semantics changes

o Define pre-conditions and abstract small steps Proof

Figure 1. Example . ° Valugs can chan.ge post r_efactoring
refactoring o Define ~ relation to define how values should change
Caset ot e Closure values may have different environment lengths
Nothing -> e_n and have different bodies
Just 1 > e o Use “weak extensional equivalence” to define valid
closure values post refactoring.

. . ' ' “Equivalent” inputs give “equivalent” output
Techniques generalize well to other Flgur?e?ézgc;il;lgmatlc o “Equivalent” inputs give “equivalent” outputs
(data-oriented) refactorings

e Extend _Under_ data type

o Keeps track of how structure of context changes
e — relation

4. Primary takeaways

5. References

[1] Ana Bove, Peter Dybjer, and UIf Norell. “A Brief Overview of Agda-A Functional Language
o Defines “valid” updates for data-oriented refactorings with Dependent Types.” In: TPHOLSs. Vol. 5674. Springer. 2009, pp. 73-78.

o Definition in the case of closures weak but sufficient - : : -
e Intrinsic typing [2] Philip Wadler, Wen Kok.ke, and Jeremy G. Siek. Programming Language Foundations in Agda.
. Aug. 2022. url: https://plfa.inf.ed.ac.uk/22.08/.
o Implicitly handles well-typedness

