
Maybe a List would be better?: Correct
by construction Maybe to List
refactorings in a Haskell-like language

CSE3000 Research Project
José Carlos Padilla Cancio (j.c.padillacancio@student.tudelft.nl)
Responsible Professor: Jesper Cockx | Supervisor: Luka Miljak

1. Introduction

4. Primary takeaways

3. Current work

Techniques generalize well to other
(data-oriented) refactorings
● Extend_Under_ data type
○ Keeps track of how structure of context changes

● ↦ᵣ relation
○ Defines “valid” updates for data-oriented refactorings
○ Definition in the case of closures weak but sufficient

● Intrinsic typing
○ Implicitly handles well-typedness

Language Design choices
● Intrinsically-typed language

○ Define type system and syntax at the same time
● De Bruijn indices

○ Variable references are all unique
● Big step semantics

○ Define pre-conditions and abstract small steps

Refactoring
● Intrinsic typing

○ Refactoring function is proof of well-typedness
● Refactoring introduces new additions to

Environment/Context
○ Use Extend_Under data type to keep track of

changes
Proof
● Values can change post refactoring

○ Define ↦ᵣ relation to define how values should change
● Closure values may have different environment lengths

and have different bodies
○ Use “weak extensional equivalence” to define valid

closure values post refactoring.
○ “Equivalent” inputs give “equivalent” outputs

● Functional languages have referential transparency, i.e. expressions
correspond to a single value

● Dependently typed languages, a form of functional programming, allow
you to write and verify proofs using their type checker.

● You can have your cake and eat it too! Write your function and formally
verify it.

● Goal of this RP is to apply this to refactorings in a Haskell Like Language
(HLL) using the dependently typed language Agda [1]

2. Objectives

1. “Define a Haskell-like language in Agda”
2. “Write the refactorings of Maybe to List and formally verify its correctness”

Figure 1. Example
refactoring

5. References
[1] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda-A Functional Language
with Dependent Types.” In: TPHOLs. Vol. 5674. Springer. 2009, pp. 73–78.

[2] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
Aug. 2022. url: https://plfa.inf.ed.ac.uk/22.08/.

Figure 2. Problematic
refactoring

