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Architectural Decisions for Language Modelling with (Small) Transformers

Pushing the limits of the compressive 
memory Introduced in Infini-attention

03 Approach

Figure 1. The Infini-attention architecture, [1]

Figure 2. Calculation of attention scores for a single token [2]

Figure 3. Example of a Key and Value being stored and retrieved from Memory

� Infini-attention (Figure 1) combines self-
attention and long-term linear attention  
within a single transformer block�

� It stores information from previous 
segments in a compressive memory 

� Self-attention computes pairwise 
interactions between all 
elements in its inpu�

� During this process, each token 
evaluates the degree of attention 
it should allocate to other tokens 
(Figure 2)�

� This allows the model to  capture 
relationships between different 
parts of the input sequence.

� The compressive memory 
works thanks to associative 
bindin�

� It can keep storing 
information without taking up 
any extra spac�

� It can be visualized with  
simple XOR operations seen 
in Figure 3

01Introduction

� Transformers are revolutionizing language 
processin�

� Traditional transformers struggle with long-
form content like books due to quadratic 
scalin�

� Infini-Attention introduces a  compressive 
memory to handle long contexts with linear 
computational demands�

� Exploring the viability of small models tailored 
for local devices is crucial for privacy, reduced 
latency, and efficient data usage, especially 
given the scarcity of new training data�

� We evaluated how to optimally integrate Infini-
Attention into transformer models

02 Contribution

� Concluded whether Infini-Attention  should be 
incorporated during pre-training or fine-tuning�

� Provided insights into the integration process 
of Infini-attention by analyzing the 
convergence behavior of gating parameters 
during fine-tuning�

� Created a replication package of Infini-
attention for reproducing our findings.�

� The replication package includes models 
published on HuggingFace and modifications 
to the Transformers library that are 
neccessary  to support Infini-attention
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04Experiment Results

� Fully pre-trained models with Infini-
Attention slightly outperform fine-tuned 
models�

� Beta values determine how much the 
model looks at compressive memory, 
they seem to converge after around 0.5 
epochs of fine-tuning (Figure 4)�

� Models that were trained on shorter 
context lengths displayed higher beta 
values (Figure 5�

� A segment length of 128 displayed the 
most balanced distribution of beta 
values (Figure 6).

Figure 4. Evaluation scores of Infini-attention enabled GPT-Neo models throughout the fine-tuning process 

Figure 5. Beta values during a single epoch of fine-tuning Figure 6.  Beta values during a single epoch of fine-tuning

128

05 06Discussion Conclusion

� Fully pre-trained models with Infini-Attention 
hold a slight performance edge over fine-
tuned models, likely due to consistent training 
conditions�

� Fine-tuning beyond 0.5 epochs likely offers 
diminishing returns�

� This relative meaning could simplify learning 
grammatical structure�

� Infini-attention may be most efficient when 
boosting the maximum input sequence by a 
factor of 4�

� Infini-Attention may be best used for 'open-
book' questions, where the task is posed 
before the input sequence.

� The goal was to investigate  the effectiveness 
of Infini-Attention in transformer models and 
find the  optimal integration strategy�

� Models trained with consistent segment 
lengths throughout training performed best�

� Shorter context still lead to decreased 
performance, indicating that Infini-Attention 
does not fully compensate for reduced 
context lengths�

� Future research should focus on models pre-
trained and fine-tuned with consistent 
segment lengths and develop evaluation 
metrics tailored to longer sequences to better 
assess Infini-Attention's potential.
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