
An Algebraic Effect for ML-Style References in Haskell
Author — Daan Panis Supervisors — Casper Bach Poulsen, Jaro Reinders Examiner — Annibale Panichella

(1) Introduction & Background
Mistakes in software can be very expensive. A common
cause of mistakes are side-effecting operations,
like exceptions and I/O.

Traditionally, Haskell handles side effects using
monads and monad transformers, which can obscure how
effects are handled and complicate reasoning about
programs.

Algebraic effects [1] offer an alternative by
separating the syntax and semantics of side-
effecting operations from how the operations are
handled.

The free monad represents computations as abstract
syntax trees (ASTs), allowing the creation of
algebraic effects through functor data types.

Handlers define how specific operations are
processed while keeping other operations in the AST
intact, enabling a modular approach to managing side
effects with customisable handlers.

A notable side effect is mutable references, similar
to those in ML [2]. They enable you to allocate a
new value in a store, returning a pointer to that
location, retrieve a value given a pointer, and
update the value at that location. Staton proposed
laws for such mutable operations to ensure
predictable and correct behaviour [3].

(2) Goal of Research
The goal of this research is to answer the question:

How can ML-style references [2] be implemented
in Haskell using algebraic effects that adhere
to global, block, and local state laws as
defined by Staton [3]?

By answering the question we offer programmers a
more flexible and predictable way of using mutable
references in Haskell.

It enables you to write programs and data structures
that are normally hard to write in Haskell. Staton's
state laws [3] give you a framework to reason about
the programs you write, ensuring their correctness.
It offers easy integration into larger systems, such
as domain-specific languages (DSLs), adding useful
effects while allowing reasoning about the programs.

(3) Implementation
Our implementation, built on top of Bach Poulsen's
blog post on free monads and algebraic effects [4],
defines three operations: creating, updating, and
reading a reference. We also introduce smart
constructors for ease of use.

The handler for this effect uses a simple list as a
store and uses a wrapper around an integer to point
to a location in the list.

(4) Staton’s State Laws
Staton describes laws that govern mutable references
to ensure that operations on mutable state in
programming languages behave predictably and
correctly [3]. We slightly modified these laws to
align with Haskell's syntax and our mutable
reference operations.

(5) Proving Programs
With the operations and smart constructors for
mutable references, we can no write programs in an
imperative style like the program that computes the
factorial of a number n.

Using Staton’s state laws, we can reorder and
transform operations to derive the definition of
factorial, thereby proving the correctness of the
program.

(6) Discussion & Conclusion
This research successfully implemented an algebraic
effect for ML-style references, proving the handler
adheres to Staton's state laws and demonstrating
program verification.

The main limitation is performance. The chosen basic
handler, while easy to prove, is slow.

We recommend further research into faster handlers
using efficient data structures or alternatives like
IORef, and studying interactions with other effects,
such as exceptions.

Additionally, exploring optimisations using Staton's
state laws could enhance competitiveness.

(7) References
[1] Plotkin, G., Power, J. (2001). Adequacy for Algebraic Effects. In: Honsell,

F., Miculan, M. (eds) Foundations of Software Science and Computation
Structures. FoSSaCS 2001. Lecture Notes in Computer Science, vol 2030.
Springer, Berlin, Heidelberg.

[2] Milner, R., Harper, R., MacQueen, D., and Tofte, M., The Definition of
Standard ML, The MIT Press, 1997.

[3] Staton, S. (2010). Completeness for Algebraic Theories of Local State. In:
Ong, L. (eds) Foundations of Software Science and Computational Structures.
FoSSaCS 2010. Lecture Notes in Computer Science, vol 6014. Springer, Berlin,
Heidelberg.

[4] Bach Poulsen, C., “Algebraic Effects and Handlers in Haskell,” , Jul. 2023.
URL http://casperbp.net/posts/2023-07-algebraic-effects/.

