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Introduction

In continual learning, deep learning models are trained on multiple tasks sequentially. This ap-

proach is useful in many real-world scenarios, but it faces two main challenges:

1. Catastrophic forgetting: model might forget tasks that it was trained on before.

2. Stability gap: even if catastrophic forgetting does not occur, performance on the previous

tasks can drop significantly and then be recovered, which is not efficient. Additionally, this can

be critical in safety-related scenarios.

Another research direction explores sharpness-aware optimization for continual learning. These

methods optimize neural networks to converge to flat minima (see Figure 1) - regions in the loss

landscape known to improve generalization. Recent studies have shown that flat minima can also

help mitigate catastrophic forgetting in continual learning.

Figure 1. Entropy-SGD [2] utilizes local entropy, which

concentrates on wide valleys in the energy landscape.

Instead of computing loss in a single point, average loss

values within neighborhood of this point is

approximated via stochastic gradient Langevin dynamics

(SGLD) [4]. γ controls the effect of sharpness

information by penalizing distance from center point. As

γ → ∞, standard optimization algorithms are recovered.

γ → 0 gives uniform loss.

Flat minima can be characterized by Hessian that have

most of its eigenvalues close to zero. C-Flat [1] in

addition to zero-order information computes gradients

to approximate second-order curvature properties,

which are controlled by hyperparameter φ. This way
explicitly targets eigenvalues of Hessian, forcing them to

be small.

We analyze how sharpness-aware optimization impacts training dynamics in CL, specifically after

task transitions. Additionally, we collect empirical evidence that second-order curvature informa-

tion gives greater control over stability gap.

Research Questions

Q1: Does sharpness-aware optimization contribute to stability gap reduction in continual

learning systems?

Q2: Does incorporating second-order information into sharpness-aware optimizers yield

additional improvements in stability mitigation?

Methodology

Baselines: considered sharpness-aware methods are optimizer-agnostic (can be applied on top of

any optimizer). As baselines we chose two standard optimizers - SGD and Adam - and evaluated

their Entropy-regularized and C-Flat variants against these baselines.

Dataset: in all experiments rotated MNIST dataset was used, with three rotation angles seen in

fixed order (0°→ 160°→ 80°). Training on each task lasted for 1000 iterations.

Metrics: to evaluate changes in stability gapwe calculate maximum decrease in accuracyMD after

switching tasks, and number of iterations until recovering performance RS. In addition to stability

gap specific metrics, we compute eventual accuracy on every task to ensure that performance on

other tasks is not sacrificed.

Analysis

We analyze Entropy-SGD and C-Flat effect on stability gap. In experiments with both optimizers

(SGD and Adam), we can see that training dynamics is affected by incorporating sharpness-aware

regularization. Improvement with C-Flat is more consistent, which is likely due to the explicit

usage of second-order information in this method.
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Figure 2. Task 1 accuracy trajectories demonstrating stability gap characteristics of SGD-based optimizers during

incremental training (shaded regions indicate ±1 standard error across runs). Both Entropy-SGD and C-Flat exhibit

faster recovery from post-switch accuracy drops and better stability preservation compared to vanilla SGD, while

simultaneously maintaining competitive downstream task performance.
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Figure 3. Task 1 accuracy trajectories for Adam-based optimizers, revealing distinct stability gap behaviors. While

C-Flat demonstrates faster recovery from task switches, Entropy-Adam shows notably degraded performance

compared to both its SGD counterpart and baseline Adam, suggesting the entropy regularization approach may be

less suitable in continual learning setting.

Second-Order Information in Optimization

Hessian of flat minima has distinct property: flat minima have most of its eigenvalues with

low magnitude. In Entropy-regularized optimization this property is not taken into account

explicitly: training is regularized by averaging loss values in the neighborhood around current

weights. In contrast to this, C-Flat targets this property directly by using gradients to regularize

training objective:

ρ · max{||∇L(θ′)|| : θ′ ∈ B(θ, ρ)} (1)

where B(θ, ρ) is a ball centered at θ with radius ρ.

Second-Order Analysis
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Figure 4. Task 1 accuracy trajectories of C-Flat (SGD) optimizers with different φ values during incremental training

with different. Larger φ values reduce MD more without sacrificing performance significantly.

Conclusion

Overall, sharpness-aware optimization effectively reduces stability gaps, with second-order meth-

ods delivering more consistent improvements, without affecting negatively model’s performance

on other tasks. In future, we want to evaluate sharpness-aware optimizers on longer tasks se-

quences and test other existing sharpness-aware methods.
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