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1. Problem Summary 5. Original experiments verification 7. Programs accessing random memory regions

To verify the performance of programs optimized in the original paper[4] four programs from the Programs that access random parts of memory multiple times in a random order were tested.
original paper were optimized by configurations put on the STOKE’s GitHub Repository and the
execution times were compared.

= Superoptimizer is a program that given a function and a set of instructions of a processor it
traverses through a space of programs that compute a given function and tries to find the

shortest one(3]. Function name occ -O3 STOKE Speed-up
= STOKE[4] introduces a cost function and then it uses Markov Chain Monte Carlo sampler to Droaram with randorm memory accesees to an arrav of arbitrary size 2 16 5 30 691377
try to find the solution with the lowest cost value. Function name gcc -O3 STOKE Speed-up Program with random memori// accesses to an arra\; of size 10y 1.78 1.86 —3%(3—5(72

= The basic principle of this Superoptimizer is correctness preservation of the optimized 21 2 59 193 519 ' '

program while performance improvement is desired but not required. 023 062 054  10%-14% Figure 4. Results of the RMA experiments
SAXPY 1.30 1.28  —1%-3%
S— ¢ ¢ ¢ Linked List 3.8 3.79 0%-1% STOKE managed to find a successful rewrite however the result of the run time measurements
@ turned out quite differently. This shows that a slight difference in the program may cause STOKE
Figure 2. Results of the experiments find a completely different rewrite for them.
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IZ:SZI&Q |, | IMSUExec t @ ¢ ¢ @ ¢ ¢ = The experiments confirmed the claim of the performance improvement or matching 8. Programs with high computational complexity
. -03. | fp21 2 ' | - . . : : . .
} g § § § rewrite() {} programs produced by gcc -O3. In case of p .and P23 gxpenments a ciear speed-up can be Programs with a significant computational complexity were tested. The goal of this experiment
@ @ observed as STOKE managed to find more efficient solutions to the given problem:s. . . L . .
. _ . was to check if the claimed limitations of the program sequences containing loops still hold.
= |n case of SAXPY experiment STOKE managed to find a solution with greatly reduced number
Figure 1. STOKE's pipeline[4] of CPU. instructions, however Speed-gp achieved on JFhIS pqrhcular ;qmputer |s.ba5|ca||y = First program solved Traveling Salesman Problem|2]. It is a O((n — 1)!) problem[2]. STOKE
non-existent compared to around 30% speed-up achieved in the original experiment. managed to find potentially better solutions but some errors had to occur in the optimization
= The experiment with program that traverses confirmed the limitations of STOKE regarding process as the programs optimized by STOKE caused a Segmentation Error.
2. Research goal the programs containing loops. Despite that STOKE managed to find the solution performing = Two other experiments also gave unsatisfactory results. Despite trying multiple
, - , , comparably well to gcc -O3Fs. configurations of the search procedure it wasn’t able to find a solution. Multiple cost
AUthglrS mfge ctmgmal Eap,erh?'a'm thaltdcaTr% genleratf griﬁr?;?hs a few times fas.tﬁgthir; thi functions, verification strategies, iteration timeouts, numbers of test cases were tried and all
ComMprErwithout any optimizations wouid. 1hey also state that the nEW program wiil be at 1€as : : : : the search for better solution took combined around 24 hours.
as efficient as programs produced by gcc -O3 and in some cases faster than expert handwritten 6. Programs with high cyclomatic complexity
assembly. The goal of this research is to . . , , , ] ,
Programs with high cyclomatic complexity were tested. It is defined as a "metric measures the 9. Conclusions
" verify claims made by the Authors, number of linearly independent paths through a piece of code’[1]. The aim of carrying out this
= identify classes of programs that STOKE may handle particularly well and any class of experiment was to check if STOKE:

orograms that stochastic optimization might not be able to handle. = The experiments confirmed that STOKE is able to produce programs at least as fast gcc -O3

= can find ways to decrease numbers of conditional jumps, in some cases.
3. Methodology contain loops may cause a slow-down.
= |t is able to reduce numbers of multiple logical and mathematical operations, decreasing
Experiments and benchmarks from the original paper have been repeated and rgsults have been Function name occ -O3 STOKE  Speed-up number of processor cycles (e.g. p23 experiment)
compared. New programs have been written to check how STOKE handle different program ; e i ot o wiioh can be srmoiied 04 047 137 = Struggles to find solutions or finds solutions slower than gcc -O3 in case of programs with
classes. Each measurement was done 10 times and average time and speed-up was calculated rogram with nEsted 1 statements which can e SImpime - - —8/-—157% 00pS
25 3 95% confidence interval Program with nested if statements containing unreachable branches  5.39  6.13  —13%-—15% . o .
' = Although some of the experiments conducted in this paper have not reduced positive results
: Figure 3. Results of the HCC experiments the other ones show great potential that lies in Stochastic Optimization.
4. Experimental Setup
All optimizations have been performed on a personal computer not on computational cluster as in STOKE managed to find solutions more efficient than a naive rewrite however their performance 10. Future Work

the original paper. The computer is MSI GS65 with i7-8750H 6 Core, 8GB RAM, Ubuntu 14.04 didn’t match the programs generated by gcc -O3.

and GCC 4.9 installed. . . o . .
= STOKE is capable of finding really smart optimization as shown e.g. in p21 function

experiment, however finding optimal configurations of STOKE is challenging and takes a lot
of work. This process should be simplified.

| a = STOKE can also produce programs that crash as shown in the Travelling Salesman
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