
EVALUATING STOKE
Przemysław Kowalewski1 supervised by Soham Chakraboty1 and Dennis Sprokholt1

1EEMCS, Delft University of Technology, The Netherlands

1. Problem Summary

Superopধmizer is a program that given a funcধon and a set of instrucধons of a processor it

traverses through a space of programs that compute a given funcধon and tries to find the

shortest one[3].

STOKE[4] introduces a cost funcধon and then it uses Markov Chain Monte Carlo sampler to

try to find the soluধon with the lowest cost value.

The basic principle of this Superopধmizer is correctness preservaধon of the opধmized

program while performance improvement is desired but not required.

Figure 1. STOKE’s pipeline[4]

2. Research goal

Authors in the original paper claim that can generate programs a few ধmes faster than the

compiler without any opধmizaধons would. They also state that the new programwill be at least

as efficient as programs produced by gcc -O3 and in some cases faster than expert handwriħen

assembly. The goal of this research is to

verify claims made by the Authors,

idenধfy classes of programs that STOKE may handle parধcularly well and any class of

programs that stochasধc opধmizaধon might not be able to handle.

3. Methodology

Experiments and benchmarks from the original paper have been repeated and results have been

compared. New programs have been wriħen to check how STOKE handle different program

classes. Each measurement was done 10 ধmes and average ধme and speed-up was calculated

as a 95% confidence interval.

4. Experimental Setup

All opধmizaধons have been performed on a personal computer not on computaধonal cluster as in

the original paper. The computer is MSI GS65 with i7-8750H 6 Core, 8GB RAM, Ubuntu 14.04

and GCC 4.9 installed.

References

[1] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante. Cyclomaধc complexity. IEEE Sođware, 33(6):27–29,

2016.

[2] Merrill M. Flood. The traveling-salesman problem. Operaࣅons Research, 4(1):61–75, 1956.

[3] Henry Massalin. Superopধmizer: A look at the smallest program. SIGARCH Comput. Archit. News, 15(5):122–126, oct 1987.

[4] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochasধc superopধmizaধon. SIGPLAN Not., 48(4):305–316, mar 2013.

5. Original experiments verification

To verify the performance of programs opধmized in the original paper[4] four programs from the

original paper were opধmized by configuraধons put on the STOKE’s GitHub Repository and the

execuধon ধmes were compared.

Funcধon name gcc -O3 STOKE Speed-up

p21 2.52 1.23 51%
p23 0.62 0.54 10%-14%
SAXPY 1.30 1.28 −1%-3%
Linked List 3.8 3.79 0%-1%

Figure 2. Results of the experiments

The experiments confirmed the claim of the performance improvement or matching

programs produced by gcc -O3. In case of p21 and p23 experiments a clear speed-up can be

observed as STOKE managed to find more efficient soluধons to the given problems.

In case of SAXPY experiment STOKE managed to find a soluধon with greatly reduced number

of CPU instrucধons, however speed-up achieved on this parধcular computer is basically

non-existent compared to around 30% speed-up achieved in the original experiment.

The experiment with program that traverses confirmed the limitaধons of STOKE regarding

the programs containing loops. Despite that STOKE managed to find the soluধon performing

comparably well to gcc -O3’s.

6. Programs with high cyclomatic complexity

Programs with high cyclomaধc complexity were tested. It is defined as a ”metric measures the

number of linearly independent paths through a piece of code”[1]. The aim of carrying out this

experiment was to check if STOKE:

can find ways to decrease numbers of condiধonal jumps,

is able to get rid of code that will never be executed.

Funcধon name gcc -O3 STOKE Speed-up

Program with nested if statements which can be simplified 0.74 0.67 −8%-−13%
Programwith nested if statements containing unreachable branches 5.39 6.13 −13%-−15%

Figure 3. Results of the HCC experiments

STOKE managed to find soluধons more efficient than a naive rewrite however their performance

didn’t match the programs generated by gcc -O3.

7. Programs accessing randommemory regions

Programs that access random parts of memory mulধple ধmes in a random order were tested.

Funcধon name gcc -O3 STOKE Speed-up

Program with random memory accesses to an array of arbitrary size 2.16 2.39 6%-13%
Program with random memory accesses to an array of size 10 1.78 1.86 −3%-−5%

Figure 4. Results of the RMA experiments

STOKE managed to find a successful rewrite however the result of the run ধme measurements

turned out quite differently. This shows that a slight difference in the programmay cause STOKE

find a completely different rewrite for them.

8. Programs with high computational complexity

Programs with a significant computaধonal complexity were tested. The goal of this experiment

was to check if the claimed limitaধons of the program sequences containing loops sধll hold.

First program solved Traveling Salesman Problem[2]. It is a O((n − 1)!) problem[2]. STOKE

managed to find potenধally beħer soluধons but some errors had to occur in the opধmizaধon

process as the programs opধmized by STOKE caused a Segmentaধon Error.

Two other experiments also gave unsaধsfactory results. Despite trying mulধple

configuraধons of the search procedure it wasn’t able to find a soluধon. Mulধple cost

funcধons, verificaধon strategies, iteraধon ধmeouts, numbers of test cases were tried and all

the search for beħer soluধon took combined around 24 hours.

9. Conclusions

The experiments confirmed that STOKE is able to produce programs at least as fast gcc -O3

in some cases.

However it is not always in all cases, STOKE’s limitaধons when it comes to programs that

contain loops may cause a slow-down.

It is able to reduce numbers of mulধple logical and mathemaধcal operaধons, decreasing

number of processor cycles (e.g. p23 experiment)

Struggles to find soluধons or finds soluধons slower than gcc -O3 in case of programs with

loops

Although some of the experiments conducted in this paper have not reduced posiধve results

the other ones show great potenধal that lies in Stochasধc Opধmizaধon.

10. Future Work

STOKE is capable of finding really smart opধmizaধon as shown e.g. in p21 funcধon

experiment, however finding opধmal configuraধons of STOKE is challenging and takes a lot

of work. This process should be simplified.

STOKE can also produce programs that crash as shown in the Travelling Salesman

experiment. This needs prevenধon.


