EVALUATING STOKE

Przemystaw Kowalewski! supervised by Soham Chakraboty! and Dennis Sprokholt!

IEEMCS, Delft University of Technology, The Netherlands

1. Problem Summary 5. Original experiments verification 7. Programs accessing random memory regions

To verify the performance of programs optimized in the original paper[4] four programs from the Programs that access random parts of memory multiple times in a random order were tested.
original paper were optimized by configurations put on the STOKE’s GitHub Repository and the
execution times were compared.

= Superoptimizer is a program that given a function and a set of instructions of a processor it
traverses through a space of programs that compute a given function and tries to find the

shortest one(3]. Function name occ -O3 STOKE Speed-up
= STOKE[4] introduces a cost function and then it uses Markov Chain Monte Carlo sampler to Droaram with randorm memory accesees to an arrav of arbitrary size 2 16 5 30 691377
try to find the solution with the lowest cost value. Function name gcc -O3 STOKE Speed-up Program with random memori// accesses to an arra\; of size 10y 1.78 1.86 —3%(3—5(72

= The basic principle of this Superoptimizer is correctness preservation of the optimized 21 2 59 193 519 ' '

program while performance improvement is desired but not required. 023 062 054 10%-14% Figure 4. Results of the RMA experiments
SAXPY 1.30 1.28 —1%-3%
S— ¢ ¢ ¢ Linked List 3.8 3.79 0%-1% STOKE managed to find a successful rewrite however the result of the run time measurements
@ turned out quite differently. This shows that a slight difference in the program may cause STOKE
Figure 2. Results of the experiments find a completely different rewrite for them.

—> Synthesis —» Optimization —» Ranker
driver() { °

IZ:SZI&Q |, | IMSUExec t @ ¢ ¢ @ ¢ ¢ = The experiments confirmed the claim of the performance improvement or matching 8. Programs with high computational complexity
. -03. | fp21 2 ' | - . . : : . .
} g § § § rewrite() {} programs produced by gcc -O3. In case of p .and P23 gxpenments a ciear speed-up can be Programs with a significant computational complexity were tested. The goal of this experiment
@ @ observed as STOKE managed to find more efficient solutions to the given problem:s. . . L . .
. _ . was to check if the claimed limitations of the program sequences containing loops still hold.
= |n case of SAXPY experiment STOKE managed to find a solution with greatly reduced number
Figure 1. STOKE's pipeline[4] of CPU. instructions, however Speed-gp achieved on JFhIS pqrhcular ;qmputer |s.ba5|ca||y = First program solved Traveling Salesman Problem|2]. It is a O((n — 1)!) problem[2]. STOKE
non-existent compared to around 30% speed-up achieved in the original experiment. managed to find potentially better solutions but some errors had to occur in the optimization
= The experiment with program that traverses confirmed the limitations of STOKE regarding process as the programs optimized by STOKE caused a Segmentation Error.
2. Research goal the programs containing loops. Despite that STOKE managed to find the solution performing = Two other experiments also gave unsatisfactory results. Despite trying multiple
, - , , comparably well to gcc -O3Fs. configurations of the search procedure it wasn’t able to find a solution. Multiple cost
AUthglrS mfge ctmgmal Eap,erh?'a'm thaltdcaTr% genleratf griﬁr?;?hs a few times fas.tﬁgthir; thi functions, verification strategies, iteration timeouts, numbers of test cases were tried and all
ComMprErwithout any optimizations wouid. 1hey also state that the nEW program wiil be at 1€as : : : : the search for better solution took combined around 24 hours.
as efficient as programs produced by gcc -O3 and in some cases faster than expert handwritten 6. Programs with high cyclomatic complexity
assembly. The goal of this research is to . . , , ,] ,
Programs with high cyclomatic complexity were tested. It is defined as a "metric measures the 9. Conclusions
" verify claims made by the Authors, number of linearly independent paths through a piece of code’[1]. The aim of carrying out this
= identify classes of programs that STOKE may handle particularly well and any class of experiment was to check if STOKE:

orograms that stochastic optimization might not be able to handle. = The experiments confirmed that STOKE is able to produce programs at least as fast gcc -O3

= can find ways to decrease numbers of conditional jumps, in some cases.
3. Methodology contain loops may cause a slow-down.
= |t is able to reduce numbers of multiple logical and mathematical operations, decreasing
Experiments and benchmarks from the original paper have been repeated and rgsults have been Function name occ -O3 STOKE Speed-up number of processor cycles (e.g. p23 experiment)
compared. New programs have been written to check how STOKE handle different program ; e i ot o wiioh can be srmoiied 04 047 137 = Struggles to find solutions or finds solutions slower than gcc -O3 in case of programs with
classes. Each measurement was done 10 times and average time and speed-up was calculated rogram with nEsted 1 statements which can e SImpime - - —8/-—157% 00pS
25 3 95% confidence interval Program with nested if statements containing unreachable branches 5.39 6.13 —13%-—15% . o .
' = Although some of the experiments conducted in this paper have not reduced positive results
: Figure 3. Results of the HCC experiments the other ones show great potential that lies in Stochastic Optimization.
4. Experimental Setup
All optimizations have been performed on a personal computer not on computational cluster as in STOKE managed to find solutions more efficient than a naive rewrite however their performance 10. Future Work

the original paper. The computer is MSI GS65 with i7-8750H 6 Core, 8GB RAM, Ubuntu 14.04 didn’t match the programs generated by gcc -O3.

and GCC 4.9 installed. . . o . .
= STOKE is capable of finding really smart optimization as shown e.g. in p21 function

experiment, however finding optimal configurations of STOKE is challenging and takes a lot
of work. This process should be simplified.

| a = STOKE can also produce programs that crash as shown in the Travelling Salesman
[1] gg;iztof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante. Cyclomatic complexity. [EEE Software, 33(6):27-29, experiment. This needs prevenﬁon.
[2] Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61-75, 1956. e
[3] Henry Massalin. Superoptimizer: A look at the smallest program. SIGARCH Comput. Archit. News, 15(5):122-126, oct 1987.
[4] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. SIGPLAN Not., 48(4):305-316, mar 2013.

References

