
An analysis of Java release practices on GitHub
Vivian Roest

Supervisor: Sebastian Proksch

EEMCS, Delft University of Technology, The Netherlands

Introduction & Background

•Github is the most popular online code hosting
platform
•Most prior research on Java practices utilizes
Maven Central [1, 2, 3, 4, 5, 6].
• Existing literature scraping Github for Java
repositories is sparse [7, 8]
• Furthermore, how does GitHub packages (and
the like), compare to Maven Central?

Research Questions
“What are the Maven release practices on
GitHub?”

1. Can we make a dataset of Java repositories on
GitHub?

2.Are these projects released, and where are
they released?

3.What is their use of external repositories?
4.How is authentication for releasing packages
to distribution repositories realized?

Method
We have created a four-stage pipeline for
gathering Java repositories from GitHub.

1. Use GitHub API to request the list of all
repositories, and filter on Java repositories;

2. Download all POM.xml files contained within
those repositories;

3. UseMaven to create an ‘effective pom’ of all
the pom files (when possible) to get the full
data;

4.Analyse the resulting POM.xml for the use of
external and distribution repositories.

Results
These are the results of a random sample of 500000 from the 15.5 million Java repositories on GitHub.

Ex
ter
na
l R
ep
os

Dis
trib

uti
on
Re
po

Inv
ali
d P
OM

Fil
e0%

2%
4%
6%
8%
10%
12%
14% 20080

6507

368

Figure: The percentage of repositories that have external repos, distribution repos or invalid POM files out of a total of
170 798. The y-axis shows percentage, the numbers on the bars are the absolute number of repositories in each category.

The source code and dataset can be found on the 4TU Research Data repository, DOI: 10.4121/67a790fe-b65a-4c30-aae0-c5b2dc7e5d4d

Most used Distribution Repositories
#n distinct url
2362 15 oss.sonatype.org
393 2 repository.apache.org
245 238 maven.pkg.github.com
205 5 s01.oss.sonatype.org
106 105 api.bintray.com
105 3 repo.spring.io
105 3 repo.jenkins-ci.org
103 2 repository.jboss.org
35 2 maven.wso2.org

Most used External Repositories
#n distinct url

9488 54 repo.spring.io
3193 71 oss.sonatype.org
1250 4 maven.aliyun.com
1064 28 repo1.maven.org
1033 11 hub.spigotmc.org
1009 135 dl.bintray.com
908 29 repository.apache.org
866 5 repository.jboss.org
763 3 jitpack.io

Discussion
Looking closer at the numbers we obtained we see that Maven Central is not as central as it might have
used to be. With quite a few uses of different package repositories, both for publishing and consuming.
Specifically GitHub packages is an interesting case, being so popular for publishing but not to depend on.
Only 89 Java repositories use GitHub packages as an external repository. The main reason is speculated
to be the issue of authentication.

Recommendations
•Developers should think twice about releasing
on GitHub packages, but not discount it
completely.
•Both GitHub and Maven are frustrating the
current situation
• Ideal solution would be adapting Maven to not
be overly reliant on IDs and allow
authentication per hostname.
• Intermediary solution can include:
–A proxy that adds authentication on the fly
– Embedding authentication tokens inside the
repository URLs (as was inspired by some real world
examples).

References
[1] Steven Raemaekers, Arie van Deursen, and Joost Visser.

Semantic versioning versus breaking changes: A study of the maven repository.
In 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation,
pages 215–224, 2014.

[2] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju.
Breaking bad? semantic versioning and impact of breaking changes in maven central: An external
and differentiated replication study.
Empirical Software Engineering, 27(3):61, 2022.

[3] Raula Gaikovina Kula, Daniel M German, Takashi Ishio, and Katsuro Inoue.
Trusting a library: A study of the latency to adopt the latest maven release.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 520–524. IEEE, 2015.

[4] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and Olivier Barais.
The maven dependency graph: a temporal graph-based representation of maven central.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pages
344–348. IEEE, 2019.

[5] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry.
A comprehensive study of bloated dependencies in the maven ecosystem.
Empirical Software Engineering, 26(3):45, 2021.

[6] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios, and Diomidis
Spinellis.
The bug catalog of the maven ecosystem.
In Proceedings of the 11th Working Conference on Mining Software Repositories, pages 372–375,
2014.

[7] Thomas Durieux, César Soto-Valero, and Benoit Baudry.
Duets: A dataset of reproducible pairs of java library-clients.
In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pages
545–549, 2021.

[8] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, and
Massimiliano Di Penta.
Focus: A recommender system for mining api function calls and usage patterns.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
1050–1060. IEEE, 2019.

1/1

https://doi.org/10.4121/67a790fe-b65a-4c30-aae0-c5b2dc7e5d4d

