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Introduction & Background

•Github is the most popular online code hosting
platform
•Most prior research on Java practices utilizes
Maven Central [1, 2, 3, 4, 5, 6].
• Existing literature scraping Github for Java
repositories is sparse [7, 8]
• Furthermore, how does GitHub packages (and
the like), compare to Maven Central?

Research Questions
“What are the Maven release practices on
GitHub?”

1. Can we make a dataset of Java repositories on
GitHub?

2.Are these projects released, and where are
they released?

3.What is their use of external repositories?
4.How is authentication for releasing packages
to distribution repositories realized?

Method
We have created a four-stage pipeline for
gathering Java repositories from GitHub.

1. Use GitHub API to request the list of all
repositories, and filter on Java repositories;

2. Download all POM.xml files contained within
those repositories;

3. UseMaven to create an ‘effective pom’ of all
the pom files (when possible) to get the full
data;

4.Analyse the resulting POM.xml for the use of
external and distribution repositories.

Results
These are the results of a random sample of 500000 from the 15.5 million Java repositories on GitHub.
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Figure: The percentage of repositories that have external repos, distribution repos or invalid POM files out of a total of
170 798. The y-axis shows percentage, the numbers on the bars are the absolute number of repositories in each category.

The source code and dataset can be found on the 4TU Research Data repository, DOI: 10.4121/67a790fe-b65a-4c30-aae0-c5b2dc7e5d4d

Most used Distribution Repositories
#n distinct url
2362 15 oss.sonatype.org
393 2 repository.apache.org
245 238 maven.pkg.github.com
205 5 s01.oss.sonatype.org
106 105 api.bintray.com
105 3 repo.spring.io
105 3 repo.jenkins-ci.org
103 2 repository.jboss.org
35 2 maven.wso2.org

Most used External Repositories
#n distinct url

9488 54 repo.spring.io
3193 71 oss.sonatype.org
1250 4 maven.aliyun.com
1064 28 repo1.maven.org
1033 11 hub.spigotmc.org
1009 135 dl.bintray.com
908 29 repository.apache.org
866 5 repository.jboss.org
763 3 jitpack.io

Discussion
Looking closer at the numbers we obtained we see that Maven Central is not as central as it might have
used to be. With quite a few uses of different package repositories, both for publishing and consuming.
Specifically GitHub packages is an interesting case, being so popular for publishing but not to depend on.
Only 89 Java repositories use GitHub packages as an external repository. The main reason is speculated
to be the issue of authentication.

Recommendations
•Developers should think twice about releasing
on GitHub packages, but not discount it
completely.
•Both GitHub and Maven are frustrating the
current situation
• Ideal solution would be adapting Maven to not
be overly reliant on IDs and allow
authentication per hostname.
• Intermediary solution can include:
–A proxy that adds authentication on the fly
– Embedding authentication tokens inside the
repository URLs (as was inspired by some real world
examples).
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