
 RQ:
Can the Byzzfuzz search algorithm detect bugs in the XRPL Consensus Protocol or its variants?
How does the Byzzfuzz search algorithm compare to a baseline algorithm in bug detection?
How does the selection of test parameters affect the performance of the Byzzfuzz search algorithm?

Both naive random testing (baseline) and ByzzFuzz testing can uncover bugs in the protocol, particularly
agreement violations in the seeded XRP LCP version.
The ByzzFuzz search algorithm significantly improves testing efficiency, detecting more critical violations per
unit time compared to the baseline method.
Configurations with c = 1, d = 2 and c = 0, d = 2 consistently yield the most effective testing results.
Further experiments are needed to determine which mutation scope, small-scope or any-scope, provides more
efficient testing.

Test Design
Designed an XRPL network of seven nodes, one of which is randomly chosen to be
Byzantine (satisfying ≤ Byzantine nodes for safety and liveness)
Configured three Unique Node Lists describing trust relationships between nodes,
with 60% overlap.
Executed naive random testing as a baseline and ran the ByzzFuzz algorithm with
varied test parameters: c ∈ {0, 1, 2} (number of process faults) and d ∈ {0, 1, 2}
(number of network faults) within first (r=8) rounds.

HYPERPARAMETER-TUNED RANDOMIZED TESTING FOR
BYZANTINE FAULT-TOLERANCE OF THE

XRP LEDGER CONSENSUS PROTOCOL
Author: Aistė Macijauskaitė <a.macijauskaite@student.tudelft.nl>
Supervisors: Dr. Burcu Kulahcioglu Ozkan, Dr. Mitchell Olsthoorn, Dr. Annibale Panichella

XRPL CONSENSUS PROTOCOL

Validator nodes are decentralized and distributed worldwide. They must reach consensus to keep the
blockchain consistent and trustworthy.
Blockchain systems rely on consensus protocols to ensure agreement among nodes, even in the
presence of malicious or faulty participants.
The XRPL Consensus Protocol whitepaper [1] describes the design and implementation of Byzantine
Fault-Tolerant (BFT) protocols that guarantees safety and liveness.
In practice, these protocols are difficult to implement correctly and often suffer from subtle logic errors.

PROBLEM

EXPERIMENTAL SETUP

Exhaustive manual testing of BFT protocols is infeasible as the number of possible execution scenarios is too large
to test manually and node communication is inherently non-deterministic.
ByzzFuzz search algorithm [2] uses a randomized fault-injection strategy that systematically injects network faults
and process faults while preserving protocol semantics.
However, there has been little focus on optimizing its hyperparameters or understanding how they impact the
performance of the testing method.

 A public, decentralized blockchain that processes transactions for the popular cryptocurrency XRP.

BYZZFUZZ SEARCH ALGORITHM

Fault-Bounded Testing
 Restrict the total faults per run (e.g., at most d network faults and c process faults).
Round-Based Testing
 Structure fault injection into specific protocol rounds.
Structure-Aware Message Mutations

Any-Scope (as) Mutations: Apply mutations that deviate significantly from the original values while
remaining syntactically valid.
Small-scope (ss) Mutations: Mutate message fields to values close to the original message either in
value or in time.

Evaluation
After each test run, we checked four consensus properties:

Termination: Every honest node decides on a value within the time limit.
Validity: Honest nodes decide only on values proposed by other honest nodes.
Integrity: No honest node decides on the same value twice.
Agreement: No two honest nodes validate different ledgers for the same round.

RESULTS & CONCLUSIONS

REFERENCES

Table 1. XRP LCP v2.4.0 with a seeded bug

[1] Schwartz, D., Youngs, N., & Britto, A. (2014). The Ripple protocol consensus algorithm (White Paper No. 8). Ripple Labs Inc. https://xrpl.org/whitepaper.pdf
[2] Winter, L. N., Busè, F., de Graaf, D., von Gleissenthall, K., & Kulahcioglu Ozkan, B. (2023). Randomized testing of Byzantine fault tolerant algorithms. Proceedings of the ACM on
Programming Languages, 7(OOPSLA 1), 757–788. https://doi.org/10.1145/3622840

A modified version of the XRPL source code, where the threshold to validate proposals is set to 40% agreement
instead of 80% agreement.

https://xrpl.org/whitepaper.pdf
https://xrpl.org/whitepaper.pdf
https://doi.org/10.1145/3622840

