
8.Conclusions and
Future Work

The effects of the time step size on the accuracy, sparsity and latency of the SNN. 

Spiking Neural Networks1.

4.Accuracy, Sparsity and Latency

Recent advancements in deep learning, such as Large Language
Models, come with high computational costs. For instance, training
GPT-3 consumes around 305% of the carbon emissions of a full
passenger flight from New York to San Francisco [1]. This is why
research is interested in more power-efficient alternatives.
Spiking Neural Networks (SNNs) offer a more energy-efficient
alternative to Deep Neural Networks by mimicking the brain's
natural processing using events called spikes. Although SNNs may
lag in accuracy compared to deep neural networks, they excel in
energy efficiency. 
These models can be even more energy efficient when implemented on
digital neuromorphic chips such as Intel Loihi and IBM TrueNorth.
These chips are designed to handle the unique processing needs of
SNNs like sparse and event-driven computations [3]. 

The main reason spiking neural networks excel in efficiency is their
sparsity. Even if networks can have many neurons computations happen
only when the neurons are activated. 
We aim to optimize spiking neural networks for power efficiency
without significantly compromising their accuracy, ensuring they
remain competitive with traditional artificial neural networks.
On top of accuracy, it is also desired to have networks with low
prediction latency. Being able to obtain the same amount of
information with earlier spikes increases the idle time of the
network. 

When doing time discretization the spike at time t will be delayed to
the end of the time bin it is situated in. This method of doing time
discretization allows us to perform experiments without having high
numerical errors or affecting the network drastically.

5.Time Discretization
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A lot of the state-of-the-art performance of SNNs in recent research
has been achieved through supervised learning models that leverage
intricate error backpropagation techniques in continuous time. 
This imposes a new challenge when converting these mechanisms on a
neuromorphic chip. Because time is discrete on digital hardware
numerical errors can be introduced as we can not calculate the
infinitely precise value of variables depending on time. 

2.Challenges

3.BATS Model

Impact of time discretization on the efficiency of continuous time Spiking Neural Networks 

The main datasets used will be the MNIST, EMNIST
and Fashion MNIST datasets. We run experiments to
measure the sparsity and prediction latency of the
model after adapting it to discrete time using
different time step sizes. 

Sparsity will be measured based on the spike
count of neurons after training. 
Latency will be measured using the time (ms) to
reach a certain confidence level during
training.
Accuracy will be measured only on the test set. 

In BATS [2] a CUBA (Current-Based) LIF (Leaky-Integrate-and-Fire)
neuron is used with a soft reset of the membrane potential. Soft
reset implies that when the membrane potential of the neuron passes a
threshold value it is decreased by a leak value and effects are
propagated to neurons in the next layers. 

7.Experiments and Environment 

Figure 1 : Visualisation of the
time discretization
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Figure 3 : Accuracy % on the test set for EMNIST
dataset over the inverse of the average total(hidden
and output layers) spike count. The red line crosses

the points on the Pareto Frontier.

With this research, we have shown
that physical limitations of time
on hardware devices do not present
drastic errors in the accuracy of
the Spiking Neural Network. On the
other hand, setting a suitable
timestep can have beneficial
effects such as improving sparsity
while maintaining a high accuracy.
However, our analysis is still
limited by errors introduced from
the backpropagation approach.
Future work could include an
analysis of the errors introduced
by changing the backpropagation
methods.  
 Another recommendation for future
work could be using a surrogate
gradient approach to better
approximate the derivative of the
discrete spike times.

The time discretization function is non-derivable with respect to the
spike timing. Therefore we apply a naive method to be able to
backpropagate effectively in the SNN. More specifically we approximate
the loss derivative with respect to the continuous spike timing to the
loss derivative with respect to the discrete spike timing.  

6.Straight-Through Estimator

Figure 4 : Prediction confidence over time for
different ∆t on the Fashion MNIST dataset
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Figure 2 : Average Accuracy% on MNIST dataset during training 


