
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

EEMCS, Delft University of Technology, The Netherlands

Atanas Pashov

Analysis of Android Spam Call Blocking Applications: Developing a

Methodology For Dynamic Analysis

1. Introduction

2. Objectives

3. Methodology

4. Results

5. Conclusions

6. REFERENCES

7. Acknowledgements

• Many Android applications that detect and/or

prevent spam calls exist, as malicious actors have

developed ways to abuse the telephony industry

• Little information as to how they work

• Already existing research on:

– building a database of caller IDs [1]

– how Android OS is protecting against spam [2]

– utilize different algorithms to detect

spam [3],[4],[5]

• Little to no research on how existing production

applications work, or how to approach analyzing

them

1. Develop a methodology for dynamically

analysing an Android application in order to

determine:

• What Android API calls are performed?

• How the application ensures that the spam

calls are blocked? (blocklisting/allowlisting

phone numbers, keeping track of a "score"

that is updated based on reputation, etc.)

• What data does it need in order to block spam

calls?

• Where is this data stored and how often is it

updated?

• Can we get a list of blocked caller IDs from the

application?

2. Develop a script that extracts the differences

between subsequent runs of a given application

• ACVTool

• Generate several reports depending on different

outputs

• Extract and analyse the differences between

them

• Also analyse the common libraries that could

contain potentially useful information

• Develop some techniques to extract more

information from the common libraries (presented

in the results)

• Mostly focused on Hiya to develop the

methodology

• Some differences in the internal libraries

- for the “suspected spam” case:

NumberParseException class from the i18n library

is executed and a custom PhoneParserFailure

class returns an exception.

=> maybe unexpected format, but still is

flagged as suspected spam

=> there is some offline on-device phone

number processing able to flag some caller IDs.

com.hiya.stingray

- Contains an enum that indicates an internal

database (possibly user defined ADD_BLACKLIST,

REMOVE_BLACKLIST) together with some

caller ID analysis (BLOCKED_STARTS_WITH to

categorize the phone numbers.

- PhoneSendEvent saved to a Realm DB

- obfuscated library in a class from the

stingray manager package pattern matches country

codes (maybe categorize caller IDs based on

country)

3. Analyzing Code Referencing Obfuscated

Classes

• Helps to map class names to obfuscated

references (method calling isFraudOrSpam(),

classes connected to flaggin numbers, enums

and caller ID DAO classes)

• ContactManager class

• getReputationLevel() => reputation is

used to determine OK, UNCERTAIN, SPAM,
FRAUD from a ReputationLevel enum

• SELECT * FROM caller_ids to Room DB

method; the Room class uses a Map object

- The method that adds to that map is called

in 11 classes; all seem to be internal DB calls

4. Analyzing Code Referencing Certain Android

Libraries

• HttpURLConnection

- References to Google Protocol Buffers

• m/z$a;->request()

- HiyaExcessiveAuthRequestsExcepti

- Probably Hiya HTTP authenticated requests

5. Analysing Code Referencing Certain Strings

• Searching for “JSON”

• Requests to hash/hashCountries,

auth/token, phone_numbers/feedback,

phone_numbers/eventProfile,

• Dynamic analysis should only be performed for

applications that are hard to analyze statically or

using different methods.

• Or in combination with other different methods

• Obfuscation really slows an engineer down

• When little information could be extracted from

other analysis approaches, or when simply more

information is needed for a specific application

• Further research:

• Would be useful to search for class/method

names that were executed

• Renaming package/class/methods in ACVTool

[1] Sharbani Pandit, Roberto Perdisci, Mustaque

Ahamad, and Payas Gupta. Towards measuring the

effectiveness of telephony blacklists. 01 2018.

[2] A. Shabtai, Y. Fledel, U. Kanonov, Yuval Elovici,

and Shlomi Dolev. Google android: A state-ofthe-art

review of security mechanisms. Neural Networks,

abs/0912.5, 12 2

[3] Arka Bhowmik and Debashis De. mtrust: Call

behavioral trust predictive analytics using

unsupervised learning in mobile cloud computing.

Wireless Personal Communications, 117:1–19, 03

2021

[4] Chinmay R C, Mrinal Raj, Sarthak Mishra, and

Shobha K. Record.ai - an ai based solution to

classify calls based on conversation. In 2021 2nd

International Conference on Smart Electronics and

Communication (ICOSEC), pages 1096–1101,

2021

[5] Chang Sung, Chi Kim, and Joo Park.

Development of humming call system for blocking

spam on a smartphone. Multimedia Tools and

Applications, 76, 08 2017.

Atanas Pashov (A.I.Pashov-1@student.tudelft.nl)

Supervisors: Apostolis Zarras (A.Zarras@tudelft.nl),

Yury Zhauniarovich (Y.Zhauniarovich@tudelft.nl)

com.webascender.callerid

1. Initial Analysis

• Start by looking into the non-obfuscated libraries

based on their names

com.hiya.client.database.db

- Contains references to a Room database

HiyaRoomDb_Impl$a.smali file

- Create table SQL statements

com.hiya.stingray

- a lot of methods that deal with displaying

the information

- “Showing post call notification:

reputation=%s identity=%s notification=%s”

- TelephonyManager and

BroadcastReceiver were used to intercept the

calls

2. Analysing the Differences

• Ran the application 4 times:

• Extract the different libraries using the

developed tool

Obfuscated classes containing
this.isFraudOrSpam

this.toCallerId that returns a

RoomCallerId (same as the DB table)

on

phone_numbers/events:

eventProfileEvent stores phone call info,

although it was not executed in any report

• Cryptographic public keys

• Call logs from the DB are used

