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: How robust is a Logic Tensor Network (I.TN)
Logic Tensor Networks ( LTNs] 9
» Representative NeSy models that handle diverse machine learning tasks efticiently; model (]g(]inS[ data poisoning BadNet attacks? | B
o Integrate neural networks (NNs) with First-Order Logic (FOL);
« Works very well with MNIST digit classification tasks;
« Learningis guided by logic-based axioms, which shape the loss using fuzzy logic operators (A, METHODOLOGY .
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¢ Type of data injection backdoor attack; BadNet B
e Perform well on clean inputs, but cause misclassifications for triggered inputs; Apply 9 configurations on each with R |
¢ Visual triggers on images, e.g, small square on the bottom-right corner of the image; variations of square triggers: "
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e Symbolically dominant inputs (e.g., d1 and d3 in MDA)
are more sensitive to poisoning;

e Stronger regularization hyperparameters during training
suppress weaker attacks over time.
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