Teaching Gradient Descent Through Analogies, Step by Step

Evaluating and using analogies to teach concepts in Machine Learning to Computer Science students

1. Introduction and Background

Artificial Intelligence (Al) and Machine Learning (ML) are
applied in many important sectors of the world.

Machine Learning is being taught in more and more lecture
halls every year.

Notional Machines have been researched in Computing
Education, but not ML specific.

One exploratory paper on using analogies in ML.

Aim of this paper: Expand on ML education using analogies.

2. Research Question(s)

How does the use of analogies in explaining Gradient

Descent affect the learning proficiency for Computer
Science students?

How do experts in Machine Learning evaluate different

analogies?

What knowledge do Computer Science students gain from

learning about Gradient Descent using analogies?

How do Computer Science students evaluate their
engagement with the topic when using analogies to teach
Machine Learning?

3. Methodology

Research goals:

[1 . Construct analogies for (concepts related to)
Gradient Descent

|2. Have experts review analogies

3. Measure learning proficiency through survey.
Educational goals are: Remember and
Understand
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4. Have students evaluate their engagement
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Figure 1: A full overview of the Methodology.

i

Participants

Experiment Group B

Figure [todo]): An example concept mapping.

e ——— T 4.1 Expert Evaluation Results (SQ1) 6. Conclusion and Future Work
l Control Group A l_, T e e sms= 1. Analogies for concepts relevant to ML / Gradient
s J = Descont
Optimization and Error /
“Questn 1 Wnatis O “Quesionz Whyis | Loss / Cost function (OLEC) Zse LD 2. No statistically significant learning
B e Concept | | mfznmmr:g Gradient 2.222 -0.185 proficiency/engagement
earning?” Definition "
e amodel?” Gradient Descent (GD) 2.389 0.111 3. Exploratory paper, framework/method for evaluation
(C —a ) .
@ N Critical Points 2 -0.111 Suggestions for Future Work:
S )| naeay | ) Batch Gradient Descent 2 -0.233 * Mimic traditional examination setup
Stochastic Gradient Descent 1.833 -0.064 « Measure over longer period of time

Figure 2: A diagram showcasing the setup for the first
part of the student survey.

3.1 Example analogy

Figure [todo]: The average score and Krippendorf’s Alpha for each
analogy, given by the experts in the expert evaluation.

4.2 Student Survey Results (SQ2&3)
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