
5.1 Results Probe
An alternating iterator was implemented that, with probability p, generates
random programs and otherwise uses the bottom-up iterator.
The configuration with p = 0.3 performs better than others.

Figure 1 suggests that using random search for 30% of the time provides a
good balance between exploration and exploitation.
The downside of adding random exploration is that the standard deviation
increases.

Figure 1. Box plot of the runtime of solving the navigation task for different
probabilities and world seeds. The timeout is 300 seconds.

5.2 Results FrAngel
At each step, FrAngel chooses to use existing fragments or generate random
programs.
If fragments are chosen, they can remain intact or be randomly modified to
allow for more exploration.

6. Conclusion

5.2 Continuation

Both algorithms proved effective when applied to Minecraft navigation tasks.
For Probe, exploring random programs 30% of the time proves to be a good option.

For FrAngel, increasing fragment exploration only helps in some cases as the
algorithm already uses random search.

Figure 2. Plot with the maximum, minimum, and mean runtime of FrAngel when using
different mutation probabilities. The timeout is 200 seconds.

This experiment uses different mutation probabilities for fragments.
The configuration with a probability of 0 achieves the most
consistent performance across different world seeds.

Figure 2 shows that random mutation can help, as the run with a
probability of 0.5 is the only one able to solve seed 4231.
However, less mutation performs better on seeds 1234 and 4123.

Nicolae Filat Sebastijan Dumančić Tilman Hinnerichs
n.filat@student.tudelft.nl s.dumancic@tudelft.nl t.r.hinnerichs@tudelft.nl

Author Responsible Professor Supervisor

3. Methodology

Program synthesis - Field where a program is searched that satisfies a user
specification. The specification can be input/output examples, incomplete
programs, or natural language.
Novel user specification - learning from rewards

Probe - a bottom-up synthesizer that uses partial solutions to
update a probabilistic grammar that guides the search.
FrAngel - a random-search iterator that “mines” fragments from partial
solutions to bias the search towards promising programs.

Probe and FrAngel were generalized to allow reward-based specifications
and different search iterators.
The Probe algorithm was adapted to use rewards instead of examples, while
FrAngel discretized the reward space into individual test cases.

Integration of the algorithms in the Minerl environment.
No image processing was done -> Learn only from rewards -> Play Minecraft
blindfolded

MineRL - a python library for reinforcement learning in Minecraft

Exploitation vs Exploration - Excessive exploration implies too many
programs, while excessive exploitation results in too few programs.

“How do we use existing synthesizers to learn from rewards?

“How do different exploration-exploitation configurations affect the
performance of FrAngel and Probe in MineRL?”

A navigation task from MineRL was used to evaluate different configurations
of exploitation-exploration tradeoffs.
The player has to move 64 blocks to reach a diamond.
Rewards indicate how much closer the player is to the target after each step.

