——$%$116.216.217.291 (—...>...

The XRP Ledger manages
%] transactions of the XRP

cryptocurrency.

It does this with the help >
of the XRP Ledger
Consensus Protocol.
This protocol allows
distributed nodes

‘@‘ worldwide to reach —/
consensus on what
transactions to apply to
the ledger, even when it

some nodes may be
faulty or malicious.

Current Market Cap of XRP Cryptocurrency [1]

Although proven to be
correct on paper,
implementation-level

Many techniques have been
proposed for testing
distributed systems,

based message scheduling
strategy, paired with
evolutionary testing. This
approach is called
EvoPriority and can be
applied with different

bugs are still possible. [2] including systematic and fitness functions. We asses
randomized testing. Some the performance of
approaches target consensus_J EvoPriority and the impact
( protocols specifically, such different fitness functions
v as ByzzFuzz [3], which have on it. Priority-based
To keep funds flowing, mutates messages to testing offers exploration
thoroughly and simulate Byzantine faults, or of message interleavings,
efﬁCiently teSting the evolutionary testing app“ed Simulating real-word
protocol is crucial. to delay-based strategies [4]. message handling
) scenarios.

Next Generation

Intercepted Queue Dispatched
«— — Messages Messages
Time Priorities TMV
Initialization Execution Selection Reproduction
Execute algorithm Rank and select test Use best ranked
Randomly generate L e
- with given test cases using fitness test cases to
initial test cases. :
cases. functions. generate new set.
v

B8RS
XOXIBUX
RO X

are assigned a priority value and later dispatched to
their intended location in order of that priority.

0000
‘ . ‘ . Messages sent over the network are intercepted. They
0000

EvoPriority is a concurrency testing
strategy that combines the priority-
based approach with an evolutionary
algorithm. The aim is to guide the
generation of priority schedules
towards buggy executions.

EvoPriority can be paired with
different fitness functions for the
selection step. We used:

e TimeFitness: guides towards
executions which last longer,
aiming for executions where
the network stops making
progress.

e ProposalFitness: guides
towards executions in which
more messages are sent over
the network, suggesting
consensus is difficult to reach.

15 - - - | [ [ [ | [
—&— RandomPriority
—&—  TimeFitness

—a— ProposalFitness

ok
o

Violations

LN
[

0 5 10 15 20 25 30 35 40 45 50
Generations

Testing Configuration Number of Violations

RandomPriority (S)
TimeFitness (S)

ProposalFitness (S)

RandomPriority (O)
TimeFitness (O)

ProposalFitness (O)

Over 50 generations of 10 test cases each,
the following conclusions were made:

e While capable of finding bugs on a bug-
seeded version of the XRPL CP,
EvoPriority was not able to find
anything on the original version.

e Compared to the RandomPriority
baseline, EvoPriority does not show any
statistically significant improvementin
bug finding capablities.

e Even though EvoPriority using
TimeFitness found more bugs than with
ProposalFitness, the difference might
be due to a random variation, rather
than a performance increase.

(S) - run on bug-seeded version of XRPL CP
(O) - run on original version of XRPL CP




