
1. Background & Motivation

2. Evolutionary Testing

1

2

3. Priority-Based Testing

TMV

TMPS

TMT

TMPS

TMV

TMT

TMV

TMT

TMPS

4. EvoPriority

5. Fitness Functions

6. Results & Conclusions
EvoPriority is a concurrency testing
strategy that combines the priority-
based approach with an evolutionary
algorithm. The aim is to guide the
generation of priority schedules
towards buggy executions.

Testing Configuration Number of Violations

RandomPriority (S) 9

TimeFitness (S) 12

ProposalFitness (S) 7

RandomPriority (O) 0

TimeFitness (O) 0

ProposalFitness (O) 0

Rank and select test
cases using fitness

functions.

Use best ranked
test cases to

generate new set.

RandomPriority
TimeFitness

ProposalFitness

To keep funds flowing,
thoroughly and
efficiently testing the
protocol is crucial.

We explore a priority-
based message scheduling
strategy, paired with
evolutionary testing. This
approach is called
EvoPriority and can be
applied with different
fitness functions. We asses
the performance of
EvoPriority and the impact
different fitness functions
have on it. Priority-based
testing offers exploration
of message interleavings,
simulating real-word
message handling
scenarios.

It does this with the help
of the XRP Ledger
Consensus Protocol.
This protocol allows
distributed nodes
worldwide to reach
consensus on what
transactions to apply to
the ledger, even when
some nodes may be
faulty or malicious.

$116.216.217.291
Current Market Cap of XRP Cryptocurrency [1]

Time

Queue

Priorities

5

1

3

 Intercepted
Messages

Dispatched
Messages

EvoPriority: Evaluating Fitness Functions in Priority-Based
Evolutionary Testing for the XRP Ledger Consensus Protocol

Initialization Selection Reproduction

Randomly generate
initial test cases.

Messages sent over the network are intercepted. They
are assigned a priority value and later dispatched to
their intended location in order of that priority.

Execution
Execute algorithm

with given test
cases.

Next Generation

Author: Călin Ciocănea (c.ciocanea@student.tudelft.nl)
Responsible Professor: Burcu Kulahcioglu Ozkan
Supervisors: Annibale Panichella, Mitchell Olsthoorn

EvoPriority can be paired with
different fitness functions for the
selection step. We used:

TimeFitness: guides towards
executions which last longer,
aiming for executions where
the network stops making
progress.
ProposalFitness: guides
towards executions in which
more messages are sent over
the network, suggesting
consensus is difficult to reach.

Generations

V
io

la
ti

o
n

s

Over 50 generations of 10 test cases each,
the following conclusions were made:

While capable of finding bugs on a bug-
seeded version of the XRPL CP,
EvoPriority was not able to find
anything on the original version.
Compared to the RandomPriority
baseline, EvoPriority does not show any
statistically significant improvement in
bug finding capablities.
Even though EvoPriority using
TimeFitness found more bugs than with
ProposalFitness, the difference might
be due to a random variation, rather
than a performance increase.

(S) - run on bug-seeded version of XRPL CP
(O) - run on original version of XRPL CP

The XRP Ledger manages
transactions of the XRP
cryptocurrency.

Although proven to be
correct on paper,
implementation-level
bugs are still possible. [2]

Many techniques have been
proposed for testing
distributed systems,
including systematic and
randomized testing. Some
approaches target consensus
protocols specifically, such
as ByzzFuzz [3], which
mutates messages to
simulate Byzantine faults, or
evolutionary testing applied
to delay-based strategies [4].

[1] CoinStats. 2025. XRP (Ripple) Live Price, Market Cap and Charts.
https://coinstats.app/coins/ripple/. Accessed: 2025-06-03.
[2] David Schwartz, Noah Youngs, and Arthur Britto. 2014. The Ripple Protocol
Consensus Algorithm. Technical Report. Ripple Labs Inc.
[3]Lars Winter, Florian Buşe, Daniël de Graaf, Kai von Gleissenthall, and Burcu
Kulahcioglu Ozkan. 2023. Randomized testing of byzantine fault tolerant
algorithms, 757–788.
[4]M. van Meerten, B. K. Ozkan, and A. Panichella. 2023. Evolutionary
Approach for Concurrency Testing of Ripple Blockchain Consensus Algorithm,
36–47.

