CONCURRENCY TESTING OF THE HOTSTUFF CONSENSUS ALGORITHM

AUTHOR
Wenkail Li
w.lI-13@student.tudelft.nl

SUPERVISORS
Ege Berkay Gulcan
E.B.Gulcan@tudelft.nl b.ozkan@tudelft.nl

Burcu Kulahcioglu Ozkan

AFFILIATION

The Netherlands

EEMCS, Delft University of Technology

1T INTRODUCTION

Why concurrency testing (of HotStuff) ?

e Concurrency is pervasive, but concurrency bugs
can be difficult to find and reproduce.

e HotStuff [1] is a popular distributed consensus
algorithm, adopted by Meta for the Diem
blockchain project.

What makes concurrency testing possible?

e Controlled scheduler. It takes over the scheduling

of threads and explore different interleavings [2].

e But the number of interleavings can be exponential.

What makes effective concurrency testing possible?

e Most concurrency bugs can be found by enforcing
the order of a small number of events [3]. Only
need to explore a small subset of the schedule.

e Probabilistic concurrency testing (PCT) [4] bounds
the minimum number of order constraints
necessary to expose the bug.

e Delay bounding (DB) [5] bounds the number of
deviations from a deterministic scheduler.

AN A A A
<—[QC cmd1 QC1 cmd2]<—[QC2 cmd3 QC3 |emd4 QC4 cmds}l—

""""""""""""

Decide |

Prepare Pre-Commit Commit

. Decide i|Prepare

Pre-Commit Commit Decide

Figure 1: Execution of pipelined HotStuff algorithm

2 RESEARCH QUESTIONS

e Can PCT and delay bounding strategy find bugs
more frequently in our HotStuff implementation,
than the baseline random walk scheduler (RW)?

e Which bound parameter gives the best performance

in PCT and delay bounding?

RELATED LITERATURE

o s LN =

3 EXPERIMENTAL SETUP

Coyote framework [2] is used for the implementation of

HotStuff and benchmarking of PCT and DB strategy.

Three concurrency bugs are seeded as test benchmarks:

e B1 (Safety violation). Duplication of client requests.
e B2 (Liveness Violation). Event reordering.
e B3 (Liveness Violation). Event reordering.

Two experiments to answer the research questions:

e Exp1 compares the number of buggy schedules
found in 1000 explorations by RW, PCT and DB

(Table 1). "F" indicates fair scheduling version used

due to starvation.
e Exp2 compares the different bounding parameters
for PCT (Table 2) and DB (Table3).

. Thread A Thread B

exec (1)

1
2 ...
3 exec(k-1)
4+ x =1
assert (x==0) 5

Figure 2: Example bug where PCT provides a much better
probabilistic guarantee (1/2) than random strategy (1/2*k)

5 CONCLUSION

e PCT found buggy schedules on all three benchmarks.
RW and DB failed to find any for B3.
e (Fair) PCT and DB indeed found bugs more frequently

than RW on B1 and B2. (Fair) DB found bugs on B1 and

B2 in almost every schedule.

e Using different values for the bound parameter did not

make a significant difference on the number of buggy

schedules found on our benchmarks. This could be

related to the characteristics of the bugs we seeded.
e Fair implementation of PCT and DB in Coyote has

comparable performance to the unfair version and can

adjust performance in case of starvation.

4 RESULTS

RW PCT F-PCT DB F-DB

Bl 609 9
B2 507 837

982
832
B3 O 9 22

0

987

0

1000
990
0

Table 1: # buggy schedules found by RW, PCT and DB.

d I 2 3 4 6 8 10
BI-F 989 988 988 991 995 990 982
B2 842 831 839 857 846 831 837
B2-F 845 848 839 850 842 832 832
B3 18 16 20 13 14 22 9
B3F 9 26 21 12 20 15 22

Table 2: # buggy schedules found by PCT using different bounds.

d 1 2 3 4 6 8 10
B1-F 1000 1000 1000 1000 1000 1000 1000
B2 97 996 996 994 995 992 987
B2-F 998 996 993 994 994 992 990
B3 0 0 0 0 0 0 0

B3-F 0 0 0 0 0 0 0

Table 3: # buggy schedules found by DB using different bounds.

6 LIMITATION & FUTURE WORK —

e Coyote and HotStuff makes it easy to write correct
code, but difficult to seed concurrency bugs.

e The performance implications of using different d
parameter for PCT are not very consistent across
existing work, and could be studied more extensively.

e There may not be a "One strategy for all”.
Performance of different strategies could depend a
lot on the characteristics of bugs in different code

bases.

e Deeper investigation of characteristics of different
concurrency bugs could give more insight to the
evaluation of different exploration strategies.

Maofan Yin et al. "HotStuff: BFT Consensus with Linearity and Responsiveness”. In: Proceed- ings of the 2019 ACM Symposium on Principles of Distributed Computing. 2019

] Pantazis Deligiannis et al. “Industrial-Strength Controlled Concurrency Testing for C# Pro- grams with COYOTE". In: Tools and Algorithms for the Construction and Analysis of Systems. 2023
S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis- takes: a comprehensive study on real world concurrency bug characteristics,” in Proceedings of the 13th international conference on Architectural support for programming languages and operating systems, 2008.
1 S. Burckhardt, P. Kothari, M. Musuvathi, and S. Na- garakatte, “A randomized scheduler with probabilistic guarantees of finding bugs,” ACM SIGARCH Computer Architecture News, vol. 38, no. 1, pp. 167-178, 2010.
1 M. Emmi, S. Qadeer, and Z. Rakamaric’, “"Delay- bounded scheduling,” in Proceedings of the 38th an- nual ACM SIGPLAN-SIGACT symposium on principles of programming languages, pp. 411-422, 2011.

