
AUTHOR

2 RESEARCH QUESTIONS

5 CONCLUSION

3 EXPERIMENTAL SETUP

RELATED LITERATURE

[1] Maofan Yin et al. “HotStuff: BFT Consensus with Linearity and Responsiveness”. In: Proceed- ings of the 2019 ACM Symposium on Principles of Distributed Computing. 2019
[2] Pantazis Deligiannis et al. “Industrial-Strength Controlled Concurrency Testing for C# Pro- grams with COYOTE”. In: Tools and Algorithms for the Construction and Analysis of Systems. 2023
[3] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis- takes: a comprehensive study on real world concurrency bug characteristics,” in Proceedings of the 13th international conference on Architectural support for programming languages and operating systems, 2008.
[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Na- garakatte, “A randomized scheduler with probabilistic guarantees of finding bugs,” ACM SIGARCH Computer Architecture News, vol. 38, no. 1, pp. 167–178, 2010.
[5] M. Emmi, S. Qadeer, and Z. Rakamaric ́, “Delay- bounded scheduling,” in Proceedings of the 38th an- nual ACM SIGPLAN-SIGACT symposium on principles of programming languages, pp. 411–422, 2011.

1 INTRODUCTION

Concurrency is pervasive, but concurrency bugs
can be difficult to find and reproduce.
HotStuff [1] is a popular distributed consensus
algorithm, adopted by Meta for the Diem
blockchain project.

Controlled scheduler. It takes over the scheduling
of threads and explore different interleavings [2].
But the number of interleavings can be exponential.

Most concurrency bugs can be found by enforcing
the order of a small number of events [3]. Only
need to explore a small subset of the schedule.
Probabilistic concurrency testing (PCT) [4] bounds
the minimum number of order constraints
necessary to expose the bug.
Delay bounding (DB) [5] bounds the number of
deviations from a deterministic scheduler.

Why concurrency testing (of HotStuff) ?

What makes concurrency testing possible?

What makes effective concurrency testing possible?

CONCURRENCY TESTING OF THE HOTSTUFF CONSENSUS ALGORITHM
Wenkai Li
w.li-13@student.tudelft.nl

SUPERVISORS
Ege Berkay Gulcan
E.B.Gulcan@tudelft.nl

4 RESULTS

6 LIMITATION & FUTURE WORK

AFFILIATION
EEMCS, Delft University of Technology
The Netherlands

Can PCT and delay bounding strategy find bugs
more frequently in our HotStuff implementation,
than the baseline random walk scheduler (RW)?
Which bound parameter gives the best performance
in PCT and delay bounding?

B1 (Safety violation). Duplication of client requests.
B2 (Liveness Violation). Event reordering.
B3 (Liveness Violation). Event reordering.

Exp1 compares the number of buggy schedules
found in 1000 explorations by RW, PCT and DB
(Table 1). "F" indicates fair scheduling version used
 due to starvation.
Exp2 compares the different bounding parameters
for PCT (Table 2) and DB (Table3).

Coyote framework [2] is used for the implementation of
HotStuff and benchmarking of PCT and DB strategy.
Three concurrency bugs are seeded as test benchmarks:

Two experiments to answer the research questions:

Figure 1: Execution of pipelined HotStuff algorithm

Burcu Kulahcioglu Ozkan
b.ozkan@tudelft.nl

Table 1: # buggy schedules found by RW, PCT and DB.

Table 3: # buggy schedules found by DB using different bounds.

Table 2: # buggy schedules found by PCT using different bounds.

Figure 2: Example bug where PCT provides a much better
probabilistic guarantee (1/2) than random strategy (1/2^k)

PCT found buggy schedules on all three benchmarks.
RW and DB failed to find any for B3.
(Fair) PCT and DB indeed found bugs more frequently
than RW on B1 and B2. (Fair) DB found bugs on B1 and
B2 in almost every schedule.
Using different values for the bound parameter did not
make a significant difference on the number of buggy
schedules found on our benchmarks. This could be
related to the characteristics of the bugs we seeded.
Fair implementation of PCT and DB in Coyote has
comparable performance to the unfair version and can
adjust performance in case of starvation.

Coyote and HotStuff makes it easy to write correct
code, but difficult to seed concurrency bugs.
The performance implications of using different d
parameter for PCT are not very consistent across
existing work, and could be studied more extensively.
There may not be a "One strategy for all".
Performance of different strategies could depend a
lot on the characteristics of bugs in different code
bases.
Deeper investigation of characteristics of different
concurrency bugs could give more insight to the
evaluation of different exploration strategies.

