{/J/Agdg ; / Extracting LLVM IR
from Agda

Jochem Broekhoff June 27, 2022 Project Group 7

1. AGDA IN SHORT 4. BENCHMARK ANALYSIS THUNKS: Delay & Force

- Functional programming language Three aspects: Agda2LLVM's thunks are visualized Thunk |
- Dependently typed (I1, ¥) - LLVM vs. MAlonzo vs. Scheme in figure 2. This shows a visual %i;?;ﬁr <
- Total: - finite-time termination - Lazy vs. strict evaluation in LLVM representation of what it means ~ N
- extensive matching - Optimization: static memory allocation to force a thunk: \
+ context
\
2. MOTIVATION Three test cases: consuming a large number, 1) A thunk starts off being a box with \
- Broader adoption of proven correctness executing quicksort, and summing all triples only a recipe for the value that it represents. (] \
- Leverage LLVM's optimization passes of natural number coordinates in a 3D sphere. This is the delayed state. Force)
- Link with popular system libraries w
POP Y Selection of each combination is plotted 2) The program passess references to the thunk !
3. IMPLEMENTATION in figure 3 (bottom right). as pointers, without looking into the box. 1
SURT . Thunk *
- Pipeline demonstrated in figure 1 5. CONCLUSIONS 3) Forcing: As soon as somewhere C >
) S;len: " Ojtsi:e:lzgmn:i?;f:: - Basic code extraction is relatively simple the value is needed, the recipe s otr »| some
o 1PI;1 -funjion NS y - No improved asymptotic performance .executed and the result is replaced — value
<0 1o liniin with svstem lib;aries - Straightforward strict evalution is no good. Tn.the same box, such that the r e.sult forced L/
8 y _ Simple optimizations can have is immediately usable program-wide.

signiﬁcant effect on the r unning time Figure 2: simplified inner workings of thunks and their lazy evaluation.
LAZINESS vs. STRICTNESS

- More indirect translation paths seem

- Strict: everything computed directly promising, via dedicated frameworks « llvm . 1« strice .7 _ { 10° o . g 3
- Lazy: values on/y computed when otherwise g i z/lcils::\zeo T—.é oo lazy .° S:C: g 1 100 i 23 he =
the program cannot be executed further So: is LLVM a practical backend? S . - S .‘50000 E) S o %
- Trickier at runtime: using thunks (see right) Yes, but it definitely needs some work. = 2 JUUTUURUORUR b 2 Ho7! . ; < ;_10_1:? —201 'f_:;
- Making lazy stufl strict is easy, not vice-versa Other approaches might be better. E oo . K E .* 1000p0 ¢ I I _101 8
§ .°..,.' § 11072 . :C_). 5 ;-10.—2 . unoptimi6ed | g
- = ..:....gv:..- 5..,::..-2:...,-..15,0000 " 1 ° « optimized S

.

3.0, 1e
ﬁ]%%at‘ LLVM IR 10 . ! " | | b | |
program(s) Parse Agda To To files bl 0 1 0 2 0 O 1 0 2 O O 1 O O 2 O O
nternals MLIR LMIR exectianie ConsumePow?2 input QuickSort input Triples input
\@ \@ Figure 3: a sample of the benchmark results.

RS RS RS
Provided by Agda This project The LLVM family

Supervisors: Jesper Cockx CSE3000 - Research Project ff
Lucas Escot BSc. CSE - EEMCS TUDelft

Figure 1: summarized pipeline of the Agda2LLVM implementation.

