
Thunk

evaluator
function

Force

Thunk

some
value

ptr

+ context

forced

delay

Jochem Broekhoff June 27, 2022 Project Group 7

Extracting LLVM IR
from Agda

Supervisors: Jesper Cockx
 Lucas Escot

CSE3000 - Research Project
BSc. CSE - EEMCS

1. AGDA IN SHORT

2. MOTIVATION

3. IMPLEMENTATION

- Functional programming language
- Dependently typed (Π, Σ)
- Total: - finite-time termination
 - extensive matching

- Broader adoption of proven correctness
- Leverage LLVM's optimization passes
- Link with popular system libraries

- Pipeline demonstrated in figure 1
- Boehm GC as memory manager
- Small supporting runtime library
- No foreign-function interface,
 so no linking with system libraries

Figure 1: summarized pipeline of the Agda2LLVM implementation.

Figure 2: simplified inner workings of thunks and their lazy evaluation.

4. BENCHMARK ANALYSIS
Three aspects:
- LLVM vs. MAlonzo vs. Scheme
- Lazy vs. strict evaluation in LLVM
- Optimization: static memory allocation

Three test cases: consuming a large number,
executing quicksort, and summing all triples
of natural number coordinates in a 3D sphere.

Selection of each combination is plotted
in figure 3 (bottom right).

5. CONCLUSIONS
- Basic code extraction is relatively simple
- No improved asymptotic performance
- Straightforward strict evalution is no good.
- Simple optimizations can have a
 significant effect on the running time
- More indirect translation paths seem
 promising, via dedicated frameworks

So: is LLVM a practical backend?
Yes, but it definitely needs some work.
Other approaches might be better.

THUNKS: Delay & Force
Agda2LLVM's thunks are visualized
in figure 2. This shows a visual
representation of what it means
to force a thunk:

1) A thunk starts off being a box with
 only a recipe for the value that it represents.
 This is the delayed state.

2) The program passess references to the thunk
 as pointers, without looking into the box.

3) Forcing: As soon as somewhere
 the value is needed, the recipe is
 executed and the result is replaced
 in the same box, such that the result
 is immediately usable program-wide.

LAZINESS vs. STRICTNESS
- Strict: everything computed directly
- Lazy: values only computed when otherwise
 the program cannot be executed further
- Trickier at runtime: using thunks (see right)
- Making lazy stuff strict is easy, not vice-versa

Figure 3: a sample of the benchmark results.

Parse
Agda

Internals
To

"MLIR"
To

"LLVM IR"
Clang executable

Provided by Agda This project The LLVM family

Agda
input

program(s)

LLVM IR
files

