
Spectrum Sensing with Tiny Machine Learning
How tiny can we go?

Author: Seth Schröder (s.d.schroeder@student.tudelft.nl) Supervisor: Prof. Qing Wang

Introduction
The wireless spectrum is super crowded causing collisions and
making it harder to communicate efficiently. Devices will need
to adapt by dynamically switching between different protocols
and frequency bands. To do this you need to listen to the radio
waves to know which bands are free to switch to – this is called
spectrum sensing.

Results
Accuracy
8% accuracy improvement on average (Fig. 4).

• SNR 30 dB: 94.1% accuracy vs 92.9%: +1.2%.
• SNR 15 dB: 83.0% accuracy vs 70.0%: +13.0%.
• 2 filters has similar accuracy to 4 and 8 filters

while having much lower latency.

Quantization [2] and deploy
Convert float32 weights

and activations to uint8 to
reduce memory footprint.

CNN

Inference
Use same pre-processing

steps to create the training
images on I/Q samples

collected from radio
receiver.

Train model
Use images from all

signal-to-noise
ratios (SNR)

Downsample
Create 64 x 64
spectrograms.

Augment
Stretches smaller features

Digitize and convert float32
pixels to uint8 to save

memory

Paint
Removes larger features.

Digitize and convert float32
pixels to uint8 to save

memory

Create spectrogram
Minimize the number of

windows for the short-time
Fourier transform to

reduce latency.

Classify
Identify which

combinations of
signals are present.

Input data
I/Q samples are taken from the
dataset or the receiver. Convert

complex numbers from float32 to
uint8

Limitations
• The dataset is generated and not tested in the wild.
• Dataset only contains Wi-Fi, Zigbee and Bluetooth

signals in the 2.4 GHz band but in reality more
signals, devices and sources of interference will be
present.

Conclusion
Our method presents many promising optimizations
for deep learning spectrum sensing techniques that
use CNNs.
The next step is to optimize it further with custom
hardware in a similar manner to the DeepSense paper
[3]. This will decrease the latency substantially to a
couple milliseconds, allowing it to be deployed on-
device to decide whether to use Wi-Fi, Zigbee or
Bluetooth.

References
[1] B. Li, W. Huang, W. Wang, and Q. Wang, “Spectrum Painting for On-Device Signal
Classification,” 2024.
[2] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper.”, 2018.
[3] D. Uvaydov et al., DeepSense: Fast Wideband Spectrum Sensing Through Real-
Time In-the-Loop Deep Learning, 2021

What is Spectrum Painting?
Solves the problem of detecting features in spectrograms with
large features that may be occluding smaller ones (see Fig. 1). It
stretches the smaller features and removes the large features
(see Fig. 2). A Convolutional Neural Network (CNN) is trained on
both of these images to identify which combinations of signals
are present.

Figure 1: Spectrogram

Figure 2: Spectrum Painting steps.

Methodology
The goal is to reduce the memory footprint
and latency of the pre-processing and
inference steps.

Figure 4: Our accuracy vs baseline.

Figure 6: Quantization vs latency.

Motivation
Deep learning methods of detecting signal patterns are suitable
for dynamic and chaotic radio environments. But few papers
have tested these on resource-constrained devices. Spectrum
Painting is a promising method that runs with low latency (2 ms)
and high accuracy (~90%) on a Raspberry Pi 4B.

Challenge: Will it work on microcontrollers?

Input Convolution
layers

Concatenate Output
classes

W
B
Z
ZB
WB
WZ
WBZ

Augmented

Painted

2 filters
3 x 3

kernel
Flatten Dense

2 filters
5 x 5

kernel

2 filters
7 x 7

kernel

Figure 3: The CNN architecture proposed by the
Spectrum Painting paper [1].

Latency
• 159 ms in total: +31.7%.
• 256 STFT windows gives a 68.6%

improvement over 1024
windows with similar accuracy
(Fig 5). There is a loss in
accuracy with fewer windows.
• Quantization reduces the

latency and model size
significantly for more complex
models (Fig 6).

Figure 5: STFT windows vs latency.

