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Introduction
The wireless spectrum is super crowded causing collisions and 
making it harder to communicate efficiently. Devices will need 
to adapt by dynamically switching between different protocols 
and frequency bands. To do this you need to listen to the radio 
waves to know which bands are free to switch to – this is called 
spectrum sensing.

Results
Accuracy
8% accuracy improvement on average (Fig. 4).

• SNR 30 dB: 94.1% accuracy vs 92.9%: +1.2%.
• SNR 15 dB:  83.0% accuracy vs 70.0%: +13.0%.
• 2 filters has similar accuracy to 4 and 8 filters 

while having much lower latency.

Quantization [2] and deploy
Convert float32 weights 

and activations to uint8 to 
reduce memory footprint.

CNN

Inference
Use same pre-processing 

steps to create the training 
images on I/Q samples 

collected from radio 
receiver.

Train model
Use images from all 

signal-to-noise 
ratios (SNR)

Downsample
Create 64 x 64 
spectrograms.

Augment
Stretches smaller features

Digitize and convert float32 
pixels to uint8 to save 

memory

Paint
Removes larger features.

Digitize and convert float32 
pixels to uint8 to save 

memory

Create spectrogram
Minimize the number of 

windows for the short-time 
Fourier transform to 

reduce latency.

Classify
Identify which 

combinations of 
signals are present.

Input data
I/Q samples are taken from the 
dataset or the receiver. Convert 

complex numbers from float32 to 
uint8

Limitations
• The dataset is generated and not tested in the wild.
• Dataset only contains Wi-Fi, Zigbee and Bluetooth 

signals in the 2.4 GHz band but in reality more 
signals, devices and sources of interference will be 
present.

Conclusion
Our method presents many promising optimizations 
for deep learning spectrum sensing techniques that 
use CNNs. 
The next step is to optimize it further with custom 
hardware in a similar manner to the DeepSense paper 
[3]. This will decrease the latency substantially to a 
couple milliseconds, allowing it to be deployed on-
device to decide whether to use Wi-Fi, Zigbee or 
Bluetooth.
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What is Spectrum Painting?
Solves the problem of detecting features in spectrograms with 
large features that may be occluding smaller ones (see Fig. 1). It 
stretches the smaller features and removes the large features 
(see Fig. 2). A Convolutional Neural Network (CNN) is trained on 
both of these images to identify which combinations of signals 
are present. 

Figure 1: Spectrogram

Figure 2: Spectrum Painting steps.

Methodology
The goal is to reduce the memory footprint 
and latency of the pre-processing and 
inference steps.

Figure 4: Our accuracy vs baseline.

Figure 6: Quantization vs latency.

Motivation
Deep learning methods of detecting signal patterns are suitable 
for dynamic and chaotic radio environments. But few papers 
have tested these on resource-constrained devices. Spectrum 
Painting is a promising method that runs with low latency (2 ms) 
and high accuracy (~90%) on a Raspberry Pi 4B.

Challenge: Will it work on microcontrollers?
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Figure 3: The CNN architecture proposed by the 
Spectrum Painting paper [1].

Latency
• 159 ms in total: +31.7%.
• 256 STFT windows gives a 68.6% 

improvement over 1024 
windows with similar accuracy 
(Fig 5). There is a loss in 
accuracy with fewer windows.
• Quantization reduces the 

latency and model size 
significantly for more complex 
models (Fig 6).

Figure 5: STFT windows vs latency.


