ROBUSTNESS OF FITTED MUTATIONAL SIGNATURE EXPOSURES

IN SINGLE-CELL DATA

(e.g. UV light, defective DNA repair) [3]

traditionally on bulk-sequencing data

exposures at the single-cell level

Deciphering Cancer Heterogeneity with Machine Learning

Consistency of signature presence across cells

- For each signature, count active cells (exposure > 0) \rightarrow average over 20 runs
- Distinct signatures seem more stable
- Possible swapping of similar signatures
- Cells with low mutation counts + flatter signatures could be more fragile

Consistency of Signature Presence across Cells

METHODOLOGY

& dropouts

INTRODUCTION

mutations [1]

- **Dataset:** 688 scRNA-seq VCFs (one breast cancer tumor)
- Variant calling → Liu et al. pipeline [5]; quality filtering → GATK best practices

Intratumor heterogeneity: different cancer cells within one tumor carry distinct

Clinical impact: therapies that target specific mutations may fail on certain cells [2]

Quantifying exposure: de novo extraction (NMF) [4] or fitting (known signatures) →

Mutational signatures: characteristic mutation patterns left by certain processes

Single-cell view: scRNA-seq → mutations per cell, finer insight but low coverage

Objective: test how much missing data destabilises fitted mutational signature

- Each VCF lists chromosome, position, ref / alt base
- Signature fitting: SigProfilerAssignment (COSMIC v3.4 SBS96, GRCh38)
- Signatures (matrix P) fixed; exposures (matrix E) estimated per cell
- Exposures normalised so each cell's values sum to 1
- Simulating data loss
- First fit signatures to original data as baseline
- Randomly delete 5% of mutations in every cell & refit signature exposures
- Repeat 20 perturb-refit cycles with different random seeds
- Repeat also for 10%, 20% and 40%

Deletion level:	5%	10%	20%	40%
SBS1	100%	100%	100%	100%
SBS5	100%	100%	100%	100%
SBS12	100%	100%	100%	100%
SBS26	100%	100%	100%	100%
SBS40c	100%	100%	100%	100%
SBS54	100%	100%	100%	100%
SBS87	35%	45%	100%	100%
SBS93	5%	10%	50%	95%
SBS37	15%	20%	50%	95%
SBS17a			30%	100%
SBS51			10%	40%
SBS21			5%	55%
SBS57			15%	90%
SBS19			5%	70%
SBS31				10%
SBS7d				50%
SBS23				15%
SBS33				15%
SBS32				15%
SBS88				20%
SBS7a				5%
SBS11				5%
SBS92				5%
SBS7b				5%

RESULTS

Signature presence in the dataset

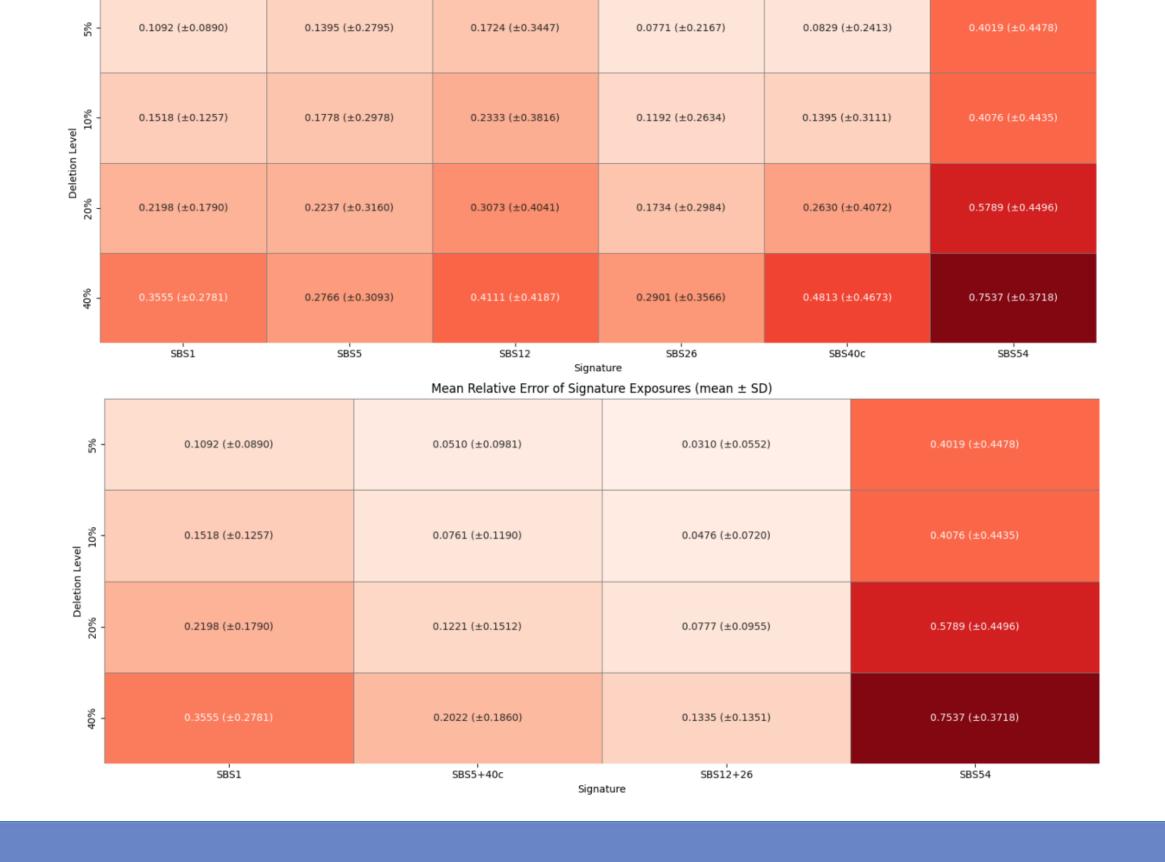
- Fraction of perturbation runs in which each signature is detected (>0 exposure in ≥1 cell)
- Strong biological signal is recoverable
- Overfitting: extra signatures likely model noise
- Similar signatures might be confused

Per-signature MRE relative to original exposures

• For this signature, how much do the exposures deviate from the original on average across all cells?

Mean Relative Error of Signature Exposures (mean ± SD)

- Lower data loss → varies more from cell to cell; higher data loss → more consistent shift across all cells
- Merging similar signatures cuts MRE by \approx 58% \rightarrow indicates signature swapping



Per-cell cosine similarity between exposure vectors

Sara Costa, Ivan Stresec

Dr. Joana Gonçalves

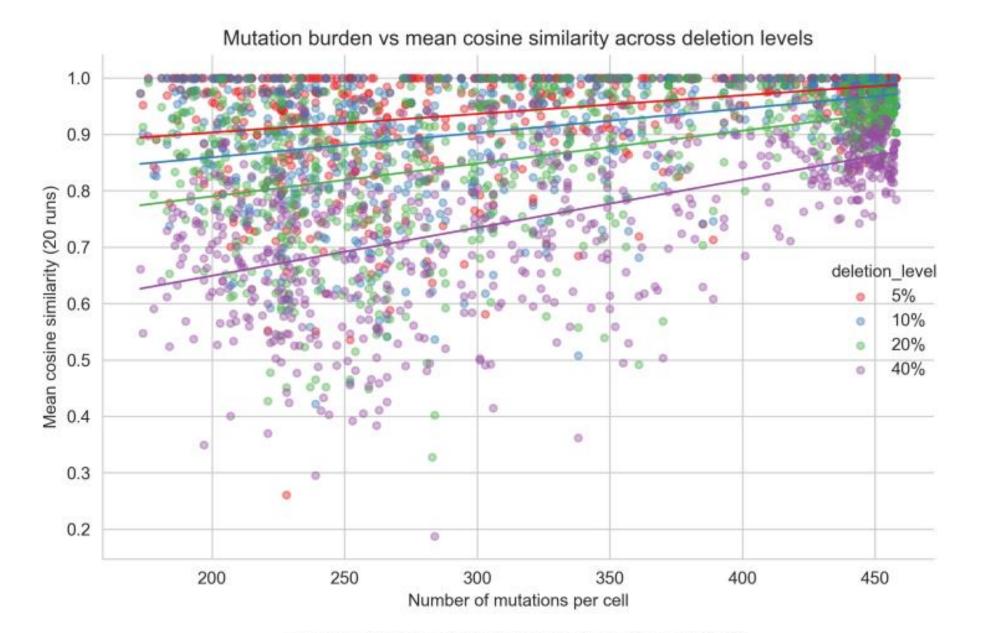
Rebecca Nys

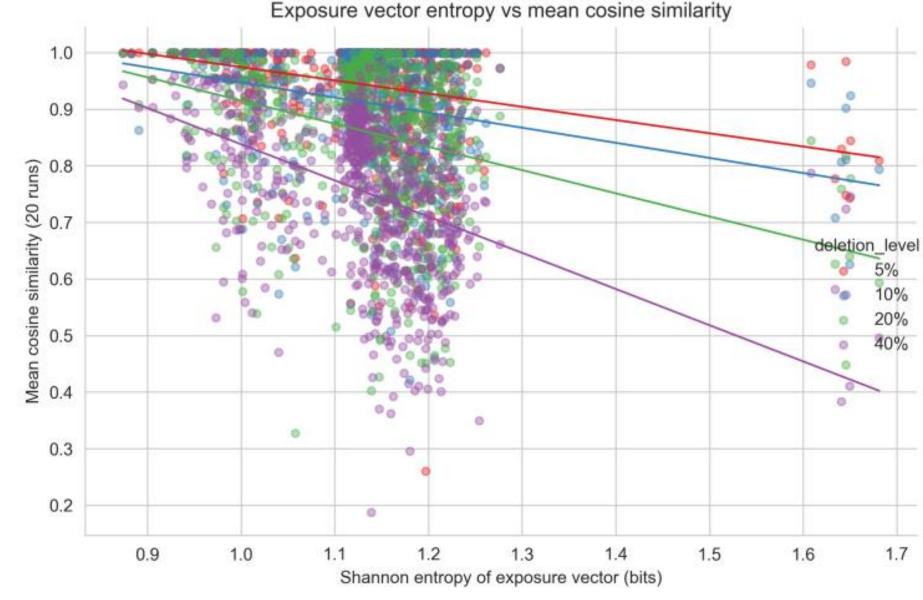
AUTHOR

SUPERVISORS

RESPONSIBLE PROFESSOR

- Per-cell cosine similarity between original exposure vector and 20 perturbed vectors
- Similarities drop as mutation loss rises, but some cells drift at 5% while others stay stable even at 40%
- More mutations \rightarrow higher similarity ($\rho \approx 0.38-0.59$)
- Low-entropy exposure vector \rightarrow higher similarity ($\rho \approx -0.53$ at 40%)





Limitations

- Single tumor, one fitting tool, uniform random dropout
- COSMIC v3.4 SBS96 library derived from bulk genomes

Future directions

- Expand to other tumor types & mutational burdens
- Track reconstruction error & run-to-run exposure consistency
- Biased dropout (chromosome-specific) & simulate noise
- Biological/clinical validation

REFERENCES

- [1] N. McGranahan and C. Swanton, "Clonal heterogeneity and tumor evolution: Past, present, and the future," Cell, vol. 168, pp. 613–628, Feb. 2017.
- [2] M. Greaves, "Evolutionary determinants of cancer," Cancer discovery, vol. 5, no. 8, pp. 806–820, 2015.
- [3] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, and M. R. Stratton, "Deciphering signatures of mutational processes operative in human cancer," Cell Reports, vol. 3, pp. 246–259, Jan. 2013.
- [4] J. G. Tate et al., "Cosmic: the catalogue of somatic mutations in cancer," Nucleic Acids Research, vol. 47, pp. D941–D947, Jan. 2019.
- [5] X. Liu, J. I. Griffiths, I. Bishara, J. Liu, A. H. Bild, and J. T. Chang, "Phylogenetic inference from single-cell RNA-seq data," Sci. Rep., vol. 13, no. 1, p. 12854, Aug. 2023.

