
Data Hound: Linking Educational Value to LLM Code Completion Performance During Inference

Research Aim

Recent models have shown improvements in performance after filtering
low educational value code from their training dataset. This research
investigates whether educational value is also relevant during the
inference step in LLMs. It aims to answer the following research questions:

RQ1: What is the distribution of educational value in The Heap dataset?
RQ2: What is the impact of educational value on code completion
performance of large language models during inference?
RQ3: How do task type, programming language, model size, and
educational value granularity influence this impact?

Background

LLMs work by continuously inferring (i.e. predicting) the next token of the input.
Model size is an important factor as larger models are capable of better
understanding natural language.

Data smells are patterns in data that are not desired in the dataset. Removing
smells from the training dataset prevents models from learning the undesired
patterns, increasing performance.

Educational value is a quality of text that scores how suitable it is for education.
This research focuses on the educational value of code, where high educational
code is defined as valid, practical, complex (i.e., advanced programming topics),
self-contained, and educationally worded.

Conclusion

As seen in Figure 1, the distribution of educational values in the heap is roughly normal
(mean ≈ 2.25, SD ≈ 0.45). Samples with extreme educational values are rare.

The results of Figure 2 indicate the existence of a turning point, as significantly lower
performance is observed before 1.75. A possible reason could be that the model predicts
higher quality code, causing a mismatch. This is supported by the observation in Figure 6,
where the line educational value performs the worst for that range. 

Figures 3–5 reveal that model size, language, and task type affect performance, though
only task type shows interaction with educational value. This difference may stem from
how the tasks are framed: next-line prediction treats input as text, whereas next-20-token
operates at the token level. 

These findings can be used practically for both future models and testing datasets. For
example, LLMs in IDEs could be prevented from inferring on low educational code,
limiting bad suggestions and saving computing time. More importantly, it can be used for
enhancing testing datasets to either highlight or ignore low educational code.
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Methodology

Educational value was measured on the full sample
using classifiers from SmolLM2. These classifiers are
models that were trained on scorings of a judge LLM.

Dataset: The Heap
Models: SmolLM2, StarCoder 2, Mellum
Metrics: exact match, normalised edit similarity, BLEU,
METEOR, ROUGE-L
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Results

def f(x):
  return 1 if x==0 else x*f(x-1);
print(f(5))

def factorial(n):
    """
    Calculate the factorial using recursion.
    Args:
        n (int): A non-negative integer.
    Returns:
        int: The factorial of n.
    """
    if n == 0:
        return 1
    return n * factorial(n - 1)

# Example use
print(factorial(5))  # Output: 120
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