
How to train your Z3: A SPARK journey to automated QA

Introduction

Critical software fails rarely — when it does, people notice.
Formal verification offers mathematical guarantees but is
reputedly “too heavyweight.”
Goal: Evaluate whether SPARK (Ada’s provable subset)
can deliver industrial-strength guarantees for both sequen-
tial algorithms and concurrent systems.

Objectives

Understand the SPARK approach to software engineer-
ing:
• RQ1 Can SPARK verify non-trivial sequential

algorithms and data structures?
• RQ2 Can SPARK verify concurrent systems, or must

we augment it?

But how does it actually work?

Formal verification in SPARK is done through a compiler
backend called GNATprove. It takes in the annotated
source code and outputs it in an intermediate form, for the
Why3 platform.

The Why3 platform then:
• generates verification conditions (VC) from the code
• turns VCs into problem instances in Satisfiability Modulo

Theory (SMT)
• invokes one or multiple SMT solvers to attempt to prove

the correctness of the programs, by finding proofs for the
verification conditions (supported solvers include CVC5,
Z3, Alt-Ergo, COLIBRI)

In SPARK, for example, a couple of the ways to create
assertions are:
pragma Assert(...)

pragma Loop_Invariant(...)

with Pre => ..., Post => ...

Pre- and post-conditions, and loop invariants have to be
given explicitly. Asserts are not always necessary, but they
are a useful tool in debugging solver failures, and can help
the solver find proofs for more complex statements much
faster, if they already know the building blocks to be true.

Methods

To answer the questions, a few case studies have been im-
plemented in Ada/SPARK:

Sequential:
• Insertion sort
• Quicksort
• HashMap

Concurrent:

• Pub/Sub channel
• IO-optimized runtime task

scheduler.

Results

Ada SPARK TLA+ Ratio
Insertion sort 100 838 8.3

QuickSort 70 966 13.8
Hash Map 100 644 6.4

Pub/Sub channel 100 170 1.7
Task scheduler 2487 4249 1.7

Important Results

Writing correct-by-construction code is difficult, but more than worth-while in the long run.

It helps catch a lot of bugs at verification time, as opposed to run time, through a very extensive testing effort. The
down-side is that it demands a significantly higher upfront investment, but this investment usually pays off during both
the testing and maintenance phases of the SDLC.

SPARK cannot fully prove functional correctness of concurrent code, a model checker like TLC is required for this.
SPARK is only able to prove the absence of data races, thanks to a few specific language constructs. It is not enough to
fully model a concurrent system.

Additionally, we offer an IO-optimized task scheduler for Ada, the first to our knowledge capable of tackling the C10k
problem, which we have also (partially) formally verified, and showed that it has a size-parametric fairness property, given
a fair underlying OS scheduler.

Conclusion

• RQ1: SPARK proves full functional correctness for
algorithms except when intensive heap use is unavoidable.

• RQ2: SPARK alone covers some safety properties;
combining with TLA covers all safety and liveness
properties — tractable in practice.

• Cost driver: writing good contracts > solver speed.
• Hybrid stacks pay off: delegating liveness to TLA kept

specs readable.

Additional Information

Code available at https://github.com/dnbln/
formalgorithms-code.
Contact Email: D.Blanovschi@student.tudelft.nl

Extra: A bit about Hoare logic

Hoare logic is a formal system for rigorous reasoning about
the correctness of software. It forms the basis of formal
verification.

The building block of this logic is a Hoare triple,
noted down as {P}C{Q}, where P and Q are assertions
and C is a command. It means that if assertion P
holds, and we run command C, then assertion Q now
holds. All sequential algorithms can be reduced to a
list of commands, but assertions P and Q are needed
for each command C to form Hoare triples. These as-
sertions typically come from annotations in the source code.

Hoare logic has been extended to deal with more complex
systems:
• Separation logic, for complex heap structures
• Probabilistic Hoare logic for randomized algorithms
• Owicki-Gries logic for concurrent systems

Extra: Task interleavings

2 threads running statements [S1; S2] and [S3; S4] respec-
tively, in parallel, is the same as non-deterministically choos-
ing between any of the following possible behaviors:

[S1; S2] ∥ [S3; S4] = CHOOSE



[S1; S2; S3; S4]
[S1; S3; S2; S4]
[S1; S3; S4; S2]
[S3; S4; S1; S2]
[S3; S1; S4; S2]
[S3; S1; S2; S4]

Extra: TCP echo server – scheduler
benchmarks against Tokio

Implementation n µ σ 95% CI
Our scheduler 24 330.83ms 123.97ms 280.17ms - 381.50ms

Tokio 24 731.04ms 306.97ms 605.59ms - 856.49ms
Table 1:CPU wall time benchmark results: showing a Cohen’s d co-
efficient of 1.71, and a p-value of 1.66 × 10−6 (10000 connections, 2
iterations of 1024 bytes, scheduler-heavy)

Implementation n µ σ 95% CI
Our scheduler 10 148.90ms 2.13ms 147.51ms - 150.29ms

Tokio 10 123.40ms 4.65ms 120.36ms - 126.44ms
Table 2:CPU wall time benchmark results: showing a Cohen’s d coeffi-
cient of 7.05, and a p-value of 1.1×10−9 (1000 connections, 10 iterations
of 1024 bytes, IO-heavy)

https://github.com/dnbln/formalgorithms-code
https://github.com/dnbln/formalgorithms-code
mailto:D.Blanovschi@student.tudelft.nl

