How to train your Z3: A SPARK journey to automated QA

Introduction

Critical software fails rarely — when it does, people notice.
Formal verification offers mathematical guarantees but is
reputedly “too heavyweight.”

Goal: Evaluate whether SPARK (Ada’s provable subset)
can deliver industrial-strength guarantees for both sequen-
tial algorithms and concurrent systems.

Objectives

Understand the SPARK approach to software engineer-

Ing:

e RQ1 Can SPARK verify non-trivial sequential
algorithms and data structures?

e RO)2 Can SPARK verify concurrent systems, or must
we augment it?

But how does it actually work?

Formal verification in SPARK is done through a compiler
backend called GNATprove. It takes in the annotated

source code and outputs it in an intermediate form, for the
Why3 platform.

The Why3 platform then:

e generates verification conditions (VC) from the code

e turns VCs into problem instances in Satisfiability Modulo
Theory (SMT)

e invokes one or multiple SM'T' solvers to attempt to prove
the correctness of the programs, by finding proots for the

verification conditions (supported solvers include CVCS5,
73, Alt-Ergo, COLIBRI)

In SPARK, for example, a couple of the ways to create
assertions are:

pragma Assert(...)
pragma Loop Invariant(...)
with Pre => ..., Post => ...

Pre- and post-conditions, and loop invariants have to be
oiven explicitly. Asserts are not always necessary, but they
are a useful tool in debugging solver failures, and can help
the solver find proofs for more complex statements much
faster, if they already know the building blocks to be true.

) \

Methods Results

To answer the questions, a few case studies have been im- Ada SPARK TLA-+ Ratio

plemented in Ada/SPARK: [nsertion sort | 100 838].3

Sequential: Concurrent: Quicksort I J00 158
Hash Map 100 | 644 6.4

* Insertion sort e Pub/Sub channel Pub/Sub channel 100 170 1.7

e Quicksort e JO-optimized runtime task Task scheduler 12487 4249 1.7

e HashMap scheduler. T e

Important Results

Writing correct-by-construction code is difficult, but more than worth-while in the long run.

It helps catch a lot of bugs at verification time, as opposed to run time, through a very extensive testing effort. The
down-side is that it demands a significantly higher upfront investment, but this investment usually pays off during both
the testing and maintenance phases of the SDLC.

SPARK cannot fully prove functional correctness ot concurrent code, a model checker like TLC is required for this.
SPARK is only able to prove the absence of data races, thanks to a few specific language constructs. It is not enough to
fully model a concurrent system.

Additionally, we offer an 10-optimized task scheduler for Ada, the first to our knowledge capable of tackling the C10k
problem, which we have also (partially) formally verified, and showed that it has a size-parametric fairness property, given
a fair underlying OS scheduler.

Conclusion

WHY YOU SHOULD CARE
ABOUT

FORMAL VERIFICATION

e RQ1: SPARK proves full functional correctness for
algorithms except when intensive heap use is unavoidable.

e RQO)2: SPARK alone covers some safety properties:
combining with TLA covers all safety and liveness
properties — tractable in practice.

TESTING
CANLIETO YOU

e Cost driver: writing good contracts > solver speed.

e Hybrid stacks pay off: delegating liveness to TLA kept
specs readable.

Tests can miss things, Formal
verification proves it always works.

Additional Information

REAL-WORLD
BUGS ARE COSTLY
https://github.com/dnbln/ Wouldn’t you want to prevent

Code available at

formalgorithms-code.
Contact Email: D.Blanovschi@student.tudelit.nl

outages or breaches?

CODE THAT
SOMEONE TRUSTS

When failure isn’t an option,
‘probably works’ isn’t good enough

%
TUDelft VERIFIED
: IT MAKES YOU

SHARPER

J Think clearly about specifications.
Write robust code

Extra: A bit about Hoare logic

Hoare logic is a formal system for rigorous reasoning about
the correctness of sottware. It forms the basis of formal
verification.

The building block of this logic is a Hoare triple,
noted down as {P}C{Q}, where P and () are assertions
and C' is a command. It means that if assertion P
holds, and we run command C', then assertion () now
holds. All sequential algorithms can be reduced to a
list of commands, but assertions P and () are needed
for each command C' to form Hoare triples. These as-
sertions typically come from annotations in the source code.

Hoare logic has been extended to deal with more complex
systems:

e Separation logic, for complex heap structures
e Probabilistic Hoare logic for randomized algorithms

e Owicki-Gries logic for concurrent systems

Extra: Task interleavings

2 threads running statements [S1; S2| and [S3; S4] respec-
tively, in parallel, is the same as non-deterministically choos-
ing between any of the following possible behaviors:

51;52;53; 54
51;.53; 52,54
S51;.53;54;52
53;54;51; 52
53;51; 54; 52
53;51;52; 54

L)

S1:52] || [S3:54] = CHOOS

Extra: TCP echo server — scheduler
benchmarks against Tokio

Implementation n v o 95% CI

Our scheduler 24 330.83ms 123.97ms 280.17ms - 381.50ms
Tokio 241731.04ms|306.97ms 605.59ms - 856.49ms

CPU wall time benchmark results: showing a Cohen’s d co-
efficient of 1.71, and a p-value of 1.66 x 107° (10000 connections, 2
iterations of 1024 bytes, scheduler-heavy)

Implementation n U o 95% CI

Our scheduler 10148.90ms|2.13ms | 147.51ms - 150.29ms
'Tokio 10 123.40ms|4.65ms 120.36ms - 126.44ms

CPU wall time benchmark results: showing a Cohen’s d coefhi-

cient of 7.05, and a p-value of 1.1 x 1077 (1000 connections, 10 iterations
of 1024 bytes, I0-heavy)

https://github.com/dnbln/formalgorithms-code
https://github.com/dnbln/formalgorithms-code
mailto:D.Blanovschi@student.tudelft.nl

