
Producing a Verified Implementation of Sequences in Agda2Hs
CSE3000 Research Project

Shashank Anand – S.Anand-1@student.tudelft.nl
Jesper Cockx – J.G.H.Cockx@tudelft.nl, Lucas Escot – L.F.B.Escot@tudelft.nl

Take two functions f and g
To show f and g are equal, we show that

Using traditional testing methods, it is
impossible to provide a guarantee that this
is true, especially if the input is an infinite
set. However using dependently typed
languages such as Agda, we may prove and
verify the property. The proof is validated by
the type checker automatically.
Verification provides a stronger guarantee
than testing.

2. Testing vs Verification
Agda2Hs is a project that identifies a
common subset of Agda and Haskell, and
translates Agda code to Haskell code. We
can produce verified Haskell code by
verifying the Agda implementation and
then translating it using Agda2Hs.

3. Agda2Hs

• Laws of type classes implemented by
sequence were proven.

• It is guaranteed that the size field (int)
contains a valid size. We prove that
functions that modify sequences return
valid sequences.

6. Verification

• Postulate trivial properties and properties
of imported types

• Prove the innermost properties first.
Combine smaller properties to simplify
proofs.

• Always case-split to prevent
ambiguity/overlapping patterns

• Try to use the auto feature of Agda.

7. Optimizations

Can Agda2Hs be used to formally verify Haskell programs?

• Can agda2hs be used to implement the Sequence library?
• What are the invariants and properties guaranteed by the library?
• Is it possible to formally state the properties and prove the 

correctness of the library?

4. Research Question/ Objectives

Example : translating id function from 
Agda to Haskell

• Sequences are an alternative 
implementation of lists.

• Implemented using finger trees (Hinze
and Patterson 2006)

• Constant time access to ends (fingers), 
and logarithmic time concatenation

• Provided in the Data.Sequence library in 
Haskell

1. Sequences

Equivalent string of this finger tree is ”thisisnotatree” A comparison of Sequence and List operations

5. Implementation

8. Conclusion

• The Data.Sequence library was 
implemented in Agda in the common 
subset of Agda and Haskell identified by 
Agda2Hs. No extensions to Agda2Hs 
were required.

• Invariants were identified and some 
properties were proven successfully. 
The technique identified may be applied 
to extend the set of verified functions.

As agda is a total language, partial
functions in the library had to be made
total using preconditions. Non-empty
precondition restricts functions to take
non-empty sequences only. In addition, the
termination checker of agda must also be
convinced. As errors cannot be thrown in a
total language, a special error function
provided by agda2hs must be used. This
error function can only be used for
impossible cases.


	Slide Number 1

