
Optimising Rewrite Rulesets
How can an optimised ruleset improve the efficiency of a term-rewriting optimiser?

1. Background Information

2. Process and Methodology

[1] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, “egg: Fastand extensible equality saturation,” Proc. ACM Program. Lang., vol. 5, no. POPL,
Jan.2021. [Online]. Available: https://doi.org/10.1145/3434304
[2] “Search Problem” icon by SURA DADI, from https://thenounproject.com/icon/search-problem-6858495/ CC BY 3.0
[3] “Build” icon by ahmadwil, from https://thenounproject.com/icon/build-5643781/ CC BY 3.0
[4] “Logistic” icon by BaristaIcon, from https://thenounproject.com/icon/logistic-3811073/ CC BY 3.0
[5] “Experiment” icon by mbomboro, from https://thenounproject.com/icon/experiment-6629324/ CC BY 3.0
[6] “Repeat” icon by Paonkz, from https://thenounproject.com/icon/repeat-6245509/ CC BY 3.0
[7] “Evaluate” icon by WARHAMMER, from https://thenounproject.com/icon/evaluate-5772783/ CC BY 3.0

Collect a ruleset for C
and codebases for

experimentation

Construct rule-rewriting
optimiser for C using EGG[1]

Develop methodology for
rule-chain extraction

1 2 3

Test the performance of
base and optimised rulesets

Repeat step 4 on
varying codebases

Analyse the collected results

4 5 6

3. Experiments and Results

4. Conclusions

- Both techniques have demonstrated capacity to increase
optimiser performance when applied to ideal conditions
and real-world scenarios.

- Common extraction method performed better than naïve
method. This is due to the overhead introduced by a larger
ruleset outweighing performance improvements (Figure 1,
Subplot B).

- Ruleset optimisations result in over-specialisation of
rulesets on a given codebase as suggested by the
optimised rulesets exhibiting poor generality.

Rewriting expressions into simpler and
more optimised forms.

Rewrites are facilitated by a set of rules
rules

*

x 2

x

/

Rules are matched to sub-expressions to transform
them.

Rules that are applied in sequence can be combined
into a single rule

((?a * ?b) / ?b)

?a(?a / ?a)

(?a * 1)

((?a * ?b) / ?c) (?a * (?b / ?c))

1

?a
By compounding rule chains

into a single rule it is
possible to shorten the time

required for super-
optimisation.

Methodologies were considered for rule extraction:
1. Naïve method, any chain of rules longer than 2 that

affects the expression cost is combined.
2. Common extraction method, apply naïve and only

considers chains that occur more than once.

The measure of performance for a ruleset on a given
expression is the lowest amount of time that is required by
the optimiser to attain the lowest possible cost expression.

Author: Mark Ardman
Contact information: M.A.Ardman@student.tudelft.nl

Supervisor: Dennis Sprokholt
Responsible professor: Soham Chakraborty

Described experiment was
conducted on the following
codebases:
- Set of competitive

programming solutions
- Synthetically generated
- GZIP source code

Fig 1. Comparison of required optimisation times for base rulesets, naively optimised(Subplot A) and common extraction (Subplot B)

- Each experiment has demonstrated increases in performance ranging from 1.6 to 2
times increase. Results for the GZIP codebase can be seen in Figure 1.

- No common rules were extracted from the competitive solutions codebase.

- Optimised rulesets produce decreases in performance when applied to codebases
they were not optimised on - poor generality.

5. Limitations and Future Research

- Implementing lossless transpilation for more accurate
results and verification of correctness of optimised
expressions.

- Devise and investigate more sophisticated rule chain
extraction and selection techniques.

- Investigate utility of the techniques when applied to a more
diverse set of codebases.

- Research applicability of naïve and common extraction
techniques for languages representing other programming
paradigms.

[2] [3] [4]

[5] [6] [7]

https://doi.org/10.1145/3434304

