
Optimising Rewrite Rulesets
How can an optimised ruleset improve the efficiency of a term-rewriting optimiser?
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3. Experiments and Results

4. Conclusions

- Both techniques have demonstrated capacity to increase 
optimiser performance when applied to ideal conditions 
and real-world scenarios.

- Common extraction method performed better than naïve 
method. This is due to the overhead introduced by a larger 
ruleset outweighing performance improvements (Figure 1, 
Subplot B).

- Ruleset optimisations result in over-specialisation of 
rulesets on a given codebase as suggested by the 
optimised rulesets exhibiting poor generality.

Rewriting expressions into simpler and 
more optimised forms.

Rewrites are facilitated by a set of rules 
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Rules are matched to sub-expressions to transform 
them.

Rules that are applied in sequence can be combined 
into a single rule

((?a * ?b) / ?b)

?a(?a / ?a)

(?a * 1)

((?a * ?b) / ?c) (?a * (?b / ?c))

1

?a
By compounding rule chains 

into a single rule it is 
possible to shorten the time 

required for super-
optimisation.

Methodologies were considered for rule extraction:
1. Naïve method, any chain of rules longer than 2 that 

affects the expression cost is combined.
2. Common extraction method, apply naïve and only 

considers chains that occur more than once.

The measure of performance for a ruleset on a given 
expression is the lowest amount of time that is required by 
the optimiser to attain the lowest possible cost expression.
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Described experiment was 
conducted on the following 
codebases:
- Set of competitive 

programming solutions
- Synthetically generated
- GZIP source code

Fig 1. Comparison of required optimisation times for base rulesets, naively optimised(Subplot A) and common extraction (Subplot B)

- Each experiment has demonstrated increases in performance ranging from 1.6 to 2 
times increase. Results for the GZIP codebase can be seen in Figure 1.

- No common rules were extracted from the competitive solutions codebase.

- Optimised rulesets produce decreases in performance when applied to codebases 
they were not optimised on - poor generality.

5. Limitations and Future Research

- Implementing lossless transpilation for more accurate 
results and verification of correctness of optimised 
expressions.

- Devise and investigate more sophisticated rule chain 
extraction and selection techniques.

- Investigate utility of the techniques when applied to a more 
diverse set of codebases.

- Research applicability of naïve and common extraction 
techniques for languages representing other programming 
paradigms.
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