Improving the performance of Recurrent Neural Networks for time series prediction

by combining Long Short-Term Memory and Attention Long Short-Term Memory
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with Attention Long Short Term Memory improve accuracy for time-series classification using Machine Learning as compared to using either separate from each other?

Long Short Term Memol

Part of recurrent neural networks
Connections between nodes form a directed
graph

Often used for sequence prediction problems
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Multi-Head Attention

Resembles the way in which humans focus more
on certain things than others.
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Attention mechanism in text analysis.

Computes attention value for every input
Linearly transforms attentions into vector
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Multi-head scaled dot-product attention
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Attention Long Short Term Memo
Pytorch implementation created during project
Multiplies multi-head attention with lower
triangular matrix filled with 1’s in order to
preserve sequential data

Dataset

Weather data intended for predicting dangerous
levels of ozone

Contains a lot of data gaps after 4 years

First 1500 days will we be used

6 days of data will be used to predict peak
temperature on the 7th day

In order to assure results are accurate

Creates 5 different versions of the dataset
Training followed by validation on the test days
will be used for each model and each split

Data used for testing will be withheld from
normalization scaler

Prevents future-looking by only training on data
sequentially before testset
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Testing loss graphs for all models on split 1
and their minimum loss achieved

Testing loss graphs for all models on split 2
and their minimum loss achieved

Testing loss graphs for all models on split 3
and their minimum loss achieved

Prediction

Prediction

M AVG£STD AVG£STD
= /" I Model (Split 1-5) (Split 2-5)
o LSTM™ 257E-147.60E-2 | 2.38E-147.27E-2
S W LL IR ALSTM 212E-14139E-1 | 1.54E-145.75E-2
A Combination 1 |  2.69E-142.03E-1| 181E-1£5.11E-2
Combination2 |  3.02E-142.32E1 | 2.03E-1£7.74E-2
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Testing loss graphs for all models on split 4
and their minimum loss achieved

Testing loss graphs for all models on split 5
and their minimum loss achieved

Combination 3 1.17E+0+1.86E+0

1.29E+0£2.13E+0

The average minimum loss and the standard deviation of all tested

models for split 1-5 and split 2-5



