State-of-the-art security and privacy attacks and mitigations in Information Centric Networking

 $\left| 1 \right|$

2

(3)

Background information on ICN

- Future Internet architecture
- Content routing
 - Location-independent
- Suitable for high internet activity:
 - Ubiquitous caching
 - Efficient content retrievals
 - Low latency
- Scalable
- Content centric security
- Security and privacy issues

Main Research C

What are the security and and defence mechanisms do these attacks imp functionalities

Research meth

- Literature review on topics:
 - ICN architecture
 - State-of-the-art security a
- 2 security attacks and 2 privat
 - Impacted entities and net
 - Attacker requirements
 - Relation between attack a
- Violated security and priv •
- Improve existent the timing at mechanism.

4	Investigation Results					
	Associated adversarial model (attacker requirements)	Entities impacted by the attack/attackers	Network metrics impacted by the attack/attackers	Security & Privacy parameters violated due to the attack	Attack-network configuration relation	
Interest flooding (Fig. 1) [2][3]	Hijacked users / owned devices to preform large amount of interest requests, request non- existent content	Users, Routers, Content providers	Pending Interest Table (PIT) space overloaded, bandwidth reduction, increase in latency, decrease in network throughput, increase network traffic	Availability, Access control, Content Authentication, Non- repudiation	Small size of PIT, large interest requests expiration time, no use of rate limiting algorithms	
Cache pollution [2]	Hijacked users / owned devices to request interest, Set of unpopular content	Routers, Users, Content providers	Bandwidth reduction, increase in network traffic, increase in response delays and latency, disrupted/falsified cache locality, decrease in cache hit-ratio	Integrity, Availability	LRU caching algorithm, no use of public/subscribe architecture, absence of popularity evaluation on content	
Timing attack (Fig. 2) [1][2]	Precise time measurements of cache hits/misses	Users, Edge routers	_	Confidentiality, Request Secrecy, Unlinkability	Non-randomized time delays for cache hit/miss	
Censorship (Fig. 3) [2]	Blacklist of content to censor, ability to drop/censor content based on content name	Users, Routers	_	Anonymity, Availability	Non-encrypted content names, No proxy usage	

Contact Info: Mohamed Rashad (m.Rashad@student.tudelft.nl), Chhagan Lal (c.lal@tudelft.nl), Mauro Conti (m.conti@tudelft.nl)

	, ennagan La					
Question	5	5 Limitations of existing defence med				
d privacy attacks	Time d	lelay additions [4]:	• St			
s in ICN and how	• De	Deteriorates user experience				
oact different of ICN?	• Inc	Increases response delays				
nodology	Time de	Improved defence mechani	ism fo			
	• Bala • Higl	 Balance between performance and user privacy High enough to counteract timing attacks 				
nd privacy attack in cy attacks: twork metrics	ICN	$td(n) = \begin{cases} 0, \\ 0.5 * td_0 \le td(n) \le 0 \end{cases}$				
and network config	Dedicate	Dedicated state nodes:				
acy parameters	• Bette	 Better resource distribution Allow state information replication 				
ttack defence	• Allow					
	• Easie	Easier debugging and logging				
		Conclusi	on ar			
Security & Privacy ameters violated due to the attack	Attack-network configuration relation	Misconfigured network, choice of countermeasures cause ICN to be	archit more			
lability, Access rol, Content	Small size of PIT, large interest requests	The improved defence mechanism the need for active state tracking a	า lacks and ac			

Fig. 3: Censorship risk scenario

chanisms for timing attacks

tate tracking for cache privacy [4]:

- Hard to debug
- **Resource inefficient**

or timing attacks

$$\begin{aligned} h &= 1\\ 75 * td_x, \quad h > 1 \end{aligned}$$

nd Future work

tecture and absence of critical

vulnerable for security and privacy attacks. s stateless state tracking which can eliminate dditional infrastructural nodes.

References:

[1] Gergely Acs, Mauro Conti, Paolo Gasti, Cesar Ghali, and Gene Tsudik. Cache privacy in named-data net-working. In2013 IEEE 33rd International Conferenceon Distributed Computing Systems, pages 41–51, 201

[2] Eslam G. AbdAllah, Hossam S. Hassanein, and Mohammad Zulkernine. A survey of security attacks ininformation-centric networking.IEEE CommunicationsSurveys Tutorials, 17(3):1441–1454, 201

[3] Alexander Afanasyev, Priya Mahadevan, Ilya Moi-seenko, Ersin Uzun, and Lixia Zhang. Interest floodingattack and countermeasures in named data networking.In2013 IFIP Networking Conference, pages 1-9, 201

[4] Abedelaziz Mohaisen Verisign Labs, Abedelaziz Mohaisen, Verisign Labs, Xinwen Zhang Huawei Tech-nologies, Xinwen Zhang, Huawei Technologies, MaxSchuchard University of Minnesota, Max Schuchard, University of Minnesota, Haiyong Xie Huawei Tech-nologies, and et al. Protecting access privacy of cachedcontents in information centric networks, May 20