Procedural content generation in education

Orchestration of content using PCG

Background Information

- What: PCG is an automated content generation technique in which a "content" (a common example would be exercises for a math quiz/game) is created by a computer.
- Why: PCG is able to produce content with limited-to-none human interaction which makes it a useful technique for education that is worth exploring.
- Which (sub-topic/area): This research focuses on how PCG is used to "orchestrate" the simultaneous generation of content of various types and what has been achieved so far.

Research Question

What has been achieved so far orchestrating the simultaneous generation of content of various types?

- Which methods are used in the industry when implementing PCG that orchestrate the simultaneous generation of content?
- How or why is PCG used to orchestrate the generation of multiple types of content? Is it preferred over other alternatives?
- What are the similarities/differences between applications of PCG that orchestrate the generation of a game? Based on these, are there implementations of PCG that are better/worse?

The main method of research of this project is literature review. Recent literature related to PCG orchestration in the education and game domains have been analyzed. Only the papers that are promising from an educational standpoint (and apply orchestration) have been selected for discussion.

Methodology

Results & Discussion

Author	V	A	Ν	G	R	L
Xu et al. (2021)	X	- 22	X	-	-	1
Lifindra et al. (2023)	- 20	<u></u>	34	-	Р	X
Game-O-Matic, Treanor et al. (2012)	X	12	Р	-	X	Р
Data Adventures, Green et al. (2018)	X	- 22	Х	-	-	Р
AudioInSpace, Hoover et al. (2015)	X	Х	-	-	Р	-
Mechanic Miner, Cook et al. (2013)	-	-	-	Р	X	Х
Dormans (2010)		-	Х	-	-	Х
Karavolos, Bouwer and Bidarra (2015)	-	10	Х	-	-	Х
Valls-Vargas et al. (2017)	Р	-	-	-	-	Х
Smith, Padget and Vidler (2018)	-		Х		-	Х
Prager et al. (2019)	Х	Х	2e			
Karavolos, Liapis and Yannakakis (2019)	-	Ξ.	-	X	X	Х
Migkotzidis and Liapis (2021)	-	~	-	X	X	X

- Generating basic math exercises with support material like a suitable text or a related visual [1]
 - Orchestrating the generation of a simulation together with a math/science question [2]
- Generating a simple maze game that features algebra questions between rooms [3]
- Controllable generation of programming exercises for an educational game utilizing generative grammars [4]
- Experiment on which orchestration approach is more "fun" for the players [5]

Future Work

Generating exercises for other subjects

X

Х

X

- Generative grammars are mostly only used for generating better levels [6] ML
- techniques could be useful

References

[1]:YI Xu,	Roger Smeets, and Rafael Bidams. 'Procedural generation of probl
for eleme	intary math education'. en. In: International Journal of Serious Game
8.2 (June	2021), pp. 49-66. Issn: 2384-8766. doi: 10.17083/jag.v8i2.396. url
http://jou	mal seriousgamessociety.org/index.php/USG/article/view/396 (visite
on 03/26	2024).
[2]: Mike	Treanor et al. "The micro-rhetorics of Game-o-Matic". In: Proceedin
of the Inti	errational Conference on the Foundations of Disital Games. FDG '1
New York	NY, USA: Association for Computing Machinery, May 2012, pp. 18-
isbr: 978	1-4503-1333-9. doi: 10.1145/2282338.2282347. url
https://do	Lorg/10.1145/ 2282338.2282347 (visited on 06/11/2024).
[3]: Benn	/ Hansen Lifindra, Darlis Herumuril, and Imam Kuswardayan. 'The
Effects of	Mathematics Game-based Learning with Random Maze Generatio
In: 2023	nternational Seminar on Application for Technology of Information a
Commun	ication (Semantic). Sept. 2023, pp. 69–74. doi:
10.11098	Semantic59612.2023.10295276.urt
https://e	explore lees org/document/10295276 (visited on 04/25/2024). p Valle-Vargas, Jichen Zhu, and Santiago OntaÅa3n. 'Graph
gramman	based controllable generation of puzzles for a learning game about
parallel p	rogramming". In: Proceedings of the 12th International Conference is
the Foun	Sations of Digital Games. FDG '17. New York, NY, USA: Association
Compute	og Machinery, Aug. 2017, pp. 1–10. isbn: 978-1-4503-5319-9. doi: 11
1145/31	02071 - 3102079. urt. https://dl.acm.org/doi/10.1145/3102071.3102
(visited o	n 05/04/2024).
[2]: Raph	ael Prager et al. "An Experiment on Game Facet Combination/". In: a
2019, pp	1-8. doi: 10.1109/CIG.2019.8548073.
[6]: Dania	ul Karavolos, Anders Bouwer, and Rafael Bidarra. 'Mixed-Initiative
Design o	/ Game Levels: Integrating Mission and Space into Level Generation
In: FDG :	2015 (2015), p. 8. url: https://www.academia.edu/download/
T921958	9/15/2015_namer_25.pdf/uisted.on.05/11/2024)

Bora Tolgay Mete b.t.mete@student.tudelft.nl Delft University of Technology Supervisor: Rafael Bidarra