Correct-by-Construction Type-Checking for Algebraic Data Types

Milos Ristié: m.ristic-l@student.tudelft.nl

1. Motivation

5. Evaluating the Type-Checker

e Static type systems prevent wide range of bugs.

e Type-checkers should never accept faulty programs.

e Avoiding bugs through intrinsic verification.

o Intrinsic verification: inherent verification by specifying
properties at the type-level of a program [1].

e Uncertain whether the benefits of correct-by-construction
type-checking outweigh the challenges for different
language features, e.g. algebraic data types (ADTSs).

e ADTs expand expressive power by adding support for
common data types like lists, trees, etc.

¢ How can correct-by-construction programming be used to
increase the trustworthiness of type-checkers for ADTs?

data List a = Nil | Cons a (List a)
Figure 1: ADT declaration in Haskell.

2. Agda

e Functional programming language and proof assistant.
¢ Allows encoding invariants and relations between values at
type level using dependent types.

3. Toy Language

e Polymorphic and recursive ADTs.
e Extension of polymorphic lambda calculus (System F) [2]
with Haskell-like ADTs and pattern matching.

AA"x":T"List" (TVar0:[]) >
‘case ‘ "x" # {-} of|
(“"Cons" # {-}:"v"u"t" ]
- ""Just"#{-}oTVarO-""v"#{-}):
(""NI1T#{-3: ]
— ‘"Nothing" # {-} o TVar 0)
|
]

Figure 2: Abstract syntax tree for an implementation of “head”.

Supervisor: Sara JuhoSova Responsible Professor: Jesper Cockx

4. Implementing the Type-Checker

e Typing relation where constructors are the typing rules.
o “Given context and A, term e has type t”

data_; + : (I': Contexta) (A : TyContext n) : Term a« — Type — Set where

I_

—-T';AF"x#p:lookupVarT xp
)

Tix:ty;Akeity

— Ak

sTsAF(Axity=e) =1
(-
TsAbe :(t,=>1)
-T;AlFe 1y

—?F;Akel'ez:tz

Figure 3: Subset of the typing rules as a relation in Agda.

e Type-checker constructs an instance of the relation which
serves as proof the term is well-typed.

e Impossible to create an instance of a relation if the relation
does not hold > Impossible to create proof forill-typed term.

e Unsound type-checker will not compile.

inferTerm : V {a : Scope} {n : N} (I" : Context a) (A : TyContext n)
(u: Term a) — Evaluator (Z[reType ]I ; At u:t)

checkTerm : V {«a : Scope} {n : N} (I" : Context a) (A : TyContext n)
(u: Term a) (ty : Type) — Evaluator (I's A - u: ty)

Figure 4: Signatures for type-checker. Both return instance of the
typing relation or an error mesage, inferTerm returns it paired with
the inferred type.

e Type inference allows fewer explicit type annotations while
maintaining type safety.

e Type-checker is sound by construction, i.e. can not accept ill-
typed terms.
e Type-checker may reject correct programs, i.e. incomplete.
o Should return proof that term is ill-typed instead of only
an error message for completeness.
e Correctly handled all 19 test cases, 6 well-typed, 13 ill-typed.

6. Discussing the CbC Approach

e Advantages
o Guarantee of termination and no run-time errors in Agda.
o Soundness by construction.

e Challenges

Added complexity.

Extrinsic verification may still be required.

Termination check can reject terminating programs.

Agda standard library [4] can be hard to navigate.

(¢]

(¢]

(¢]

(¢]

7. Future Work

e Research correct-by-construction type-checking for
further language features.
o Generalized algebraic data types.
e Research integration with correct-by-construction
compilers and interpreters.

8. References

[1] J. Cockx. (2019). Correct-by-construction programming in Agda: indexed datatypes
and dependent pattern matching [Onlinel. Available: https://jespercockx.github.io/
ohrid19-agda/slides/slides2.html#/title-slide.

[2] J. Girard, “The system F of variable types, fifteen years later,” Theor. Comput. Sci., vol.
45, no. 2, pp. 1569-192, Sep. 1986.

[4] Agda standard library. “Documentation for the Agda standard library.” agda.github.io.
Accessed: Jun. 5,2024. [Online] Available: https://agda.github.io/agda-stdlib/

3
TUDelft




