
1. Motivation 4. Implementing the Type-Checker 5. Evaluating the Type-Checker

2. Agda

Functional programming language and proof assistant.

Allows encoding invariants and relations between values at

type level using dependent types.

3. Toy Language

6. Discussing the CbC Approach

7. Future Work

8. References

Static type systems prevent wide range of bugs.

Type-checkers should never accept faulty programs.

Avoiding bugs through intrinsic verification.

Intrinsic verification: inherent verification by specifying

properties at the type-level of a program [1].

Uncertain whether the benefits of correct-by-construction

type-checking outweigh the challenges for different

language features, e.g. algebraic data types (ADTs).

ADTs expand expressive power by adding support for

common data types like lists, trees, etc.

How can correct-by-construction programming be used to

increase the trustworthiness of type-checkers for ADTs?

Correct-by-Construction Type-Checking for Algebraic Data Types
Miloš Ristić: m.ristic-1@student.tudelft.nl

Supervisor: Sára Juhošová Responsible Professor: Jesper Cockx

Figure 2: Abstract syntax tree for an implementation of “head”.

Polymorphic and recursive ADTs.

Extension of polymorphic lambda calculus (System F) [2]

with Haskell-like ADTs and pattern matching.

Figure 3: Subset of the typing rules as a relation in Agda.

Typing relation where constructors are the typing rules.

“Given context Γ and Δ, term e has type t”

Type-checker constructs an instance of the relation which

serves as proof the term is well-typed.

Impossible to create an instance of a relation if the relation

does not hold > Impossible to create proof for ill-typed term.

Unsound type-checker will not compile.

Figure 4: Signatures for type-checker. Both return instance of the
typing relation or an error mesage, inferTerm returns it paired with
the inferred type.

Type inference allows fewer explicit type annotations while

maintaining type safety.
[1] J. Cockx. (2019). Correct-by-construction programming in Agda: indexed datatypes

and dependent pattern matching [Online]. Available: https://jespercockx.github.io/

ohrid19-agda/slides/slides2.html#/title-slide.

[2] J. Girard, “The system F of variable types, fifteen years later,” Theor. Comput. Sci., vol.

45, no. 2, pp. 159–192, Sep. 1986.

[4] Agda standard library. “Documentation for the Agda standard library.” agda.github.io.

Accessed: Jun. 5, 2024. [Online] Available: https://agda.github.io/agda-stdlib/

Type-checker is sound by construction, i.e. can not accept ill-

typed terms.

Type-checker may reject correct programs, i.e. incomplete.

Should return proof that term is ill-typed instead of only

an error message for completeness.

Correctly handled all 19 test cases, 6 well-typed, 13 ill-typed.

Advantages

Guarantee of termination and no run-time errors in Agda.

Soundness by construction.

Challenges

Added complexity.

Extrinsic verification may still be required.

Termination check can reject terminating programs.

Agda standard library [4] can be hard to navigate.

Research correct-by-construction type-checking for

further language features.

Generalized algebraic data types.

Research integration with correct-by-construction

compilers and interpreters.

Figure 1: ADT declaration in Haskell.

