
Multi-Label Gold Asymmetric Loss Correction
with Single-Label Regulators (GALC-SLR)

RESEARCH QUESTIONS

• What is the impact of wrong labels on the performance 
of a state-of-the-art multi-label classifier?

• How to accurately estimate the multi-label noise 
distribution using extra information from trusted data?

• How  to  train  an  accurate  multi-label  classifier  with 
wrong label information?
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CONCLUSION
GALC-SLR improves the mean Average Precision (mAP) over ASL 
by 13.81% on average and up to 28.67%.
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RESULTS 
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BACKGROUND

• MLL – Multi Label-Learning
Acquiring a fully labeled and reliable 
dataset is time-consuming and expensive
• ASL  – Asymmetric Loss
State-of-the-art results
• GLC  – Gold Loss Correction
Robust Single Label-Learning approach
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METHOD – GALC-SLR
GALC-SLR combines an asymmetric loss approach with 
a gold loss correction  approach  to  counter  noisy  labels.
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