
 Uncovering Secrets of the Maven Repository

Maven, a Yiddish word meaning accumulator of knowledge, began as an attempt to simplify the build processes in the Jakarta Turbine project

Java Build Aspects

Introduction
● Maven is a buildtool for Java-based software 

projects. The largest repository for these projects is 
Maven Central.

● The build system has evolved since its introduction 
in 2004.

● Version adoption, reproducibility and desirable 
build features are important metrics for 
maintainers in the software ecosystem.

● Maven Central provides an archive of releases 
suitable as dataset for research about the Java 
ecosystem.

Method
The set of available packages is retrieved from an index file. From this set, a subset is 
selected for analysis. For this research, one unique random version per package is selected.

These packages then get downloaded and passed to extractors, which fetch raw data from 
the downloaded artifacts. (Fig. 1)

For each research question the relevant data to fetch from artifacts are:

1. Does the archive contain module-info.class files?
2. Each .class (compiled Java code) file contains a version in its header. Optionally, the 

META-INF/MANIFEST.MF file may contain some Java version and multi-release data.
3. Every Maven artifact has a configuration file available called the POM. Part of the POM 

is the compiler configuration.

An additional program then further analyzes the raw data.

Research Questions
1. How common are Java modules (a language feature 

introduced in Java 9)?
2. What are the popular Java versions used?
3. How is the compiler configured?

Research

Results
In total, 479915 packages were selected for analysis, of which 1.4% 
could not be resolved. 86.6% of the resolved packages have an 
archive artifact.

How common are Java modules?
● 1.7% of the archives use Java modules.

○ From these archives, 29.2% contain a majority of 
class files compiled in a version older than Java 9.

What is the Java version distribution?
● The most common Java version is Java SE 8, being the 

most common class version in 44.5% of the archives. In 
total, 51.2% of all artifacts use a long-term support (LTS) 
version. 17.9% does not contain class files. (Fig. 2)

● 4.0% of archives multiple different class versions.
● There are class files compiled using Java versions in 

early-access, and there are class files compiled using 
unsupported Java versions.

● Judging from the Java development kit (JDK) used to build 
artifacts, 37.26% build their project specifically compiling 
code to older Java versions.

Conclusion
1.

a. Java modules are very uncommon, presumably 
because they are not required when developing Java 
software.

b. Occasionally they are purposely included in projects 
using a Java version that does not support Java 
modules.

2.
a. LTS versions are dominant. The oldest LTS version is 

the most common.
b. Older versions are relatively common overall, but their 

presence is significantly declining in recent years.
c. The presence of multiple class versions in a single 

archive implies the archive published contains 
repackaged code.

d. Releases for unsupported Java versions are assumed 
to be the result of much legacy code still being used. 
The reason for releases using early-access Java 
builds is unknown.

3.
a. Almost half the POMs rely on default configurations.
b. The most important setting the release version.
c. Encoding is often ignored.
d. A significant chunk of projects improve their 

software’s quality by utilizing more warnings and 
other feedback from both the compiler and linter.

Limitations
● Maven build cycles are inherently version-dependent.
● Maven can include both generated sources and 

third-party sources in the final artifact, which are not 
distinguished from the actual source.

● Predicting Maven build output is nontrivial and as 
such has been simplified for the purposes of this 
research.

● Non-Java and non-Maven artifacts exists in the Maven 
ecosystem.

References
[1] R. Kula, D. German, T. Ishio, and K. Inoue, “Trusting a 
library: A study of the latency to adopt the latest maven 
release,” 2015
[2] R. G. Kula, D. M. German, T. Ishio, A. Ouni, andK. Inoue, 
“An exploratory study on library aging by monitoring client 
usage in a software ecosystem,” 2017
[3] C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, 
“Buildsonic: Detecting and repairing performance-related 
configuration smells for continuous integration builds,” 2023

Contact Info
G.J.T. Bot
g.j.t.bot@student.tudelft.nl

Supervisor: M. Keshani
Responsible Professor: Dr. S. Proksch

Figure 2. Java version distribution.

Data Selection
● Artifacts hosted on Maven Central are publicly 

accessible.
● One unique version per package is randomly 

selected, giving a sample size of almost half a 
million packages.

Figure 1. Application diagram.

How is the compiler configured?
● 55.0% of all artifacts use the Apache Maven compiler plugin.
● Only 1.21% of configurations deviate from using a standard javac compiler. Since most other Java virtual machine (JVM) 

languages have a plugin to compile their code rather than using the Maven compiler plugin, these languages are rarely 
detected this way.

● 12.4% of configurations specify additional compiler arguments, with the most common compiler flags specified being 
debugging and verbosity settings such as -Xlint.

● In basically all configurations the source and/or target versions are specified. Only 3.92% of configurations specify neither. 
The most common version is Java SE 8.

● The vast majority of configurations do not specify a source encoding (74.5%), but if they do, most use ASCII (or extensions 
thereof). The most popular encoding used is UTF-8, making out 25.0% of the configurations.

Future Work
● Java version feature scope and release cycle.
● Quality of software published on public repositories.

Related Work
● Version adoption in dependencies [1].
● Library aging [2].
● Performance-related configuration smells in build 

cycles [3].

mailto:g.j.t.bot@student.tudelft.nl

