]
TUDelft

nstitute of Neuroinformatics

Review and Benchmark of sparse CNNs on GPU

Author: Qilin Chen Supervisor: Hasan Mohamed Responsible Professors: Shih-Chii Liu, Nergis Tomen

1. Introduction 2. Background 5. Results

 The structure of modern GPUs is as follows: thread (with private

* Pruning is often applied to Convolution neural networks (CNNs) to i
register and access to the constant cache) --> thread groups (a warp

e SparseRT and Sputnik: time and speedup to perform SpMM compared to cuBLAS

reduce the computation and memory cost for training and . . ike
o P y 9 of 32 threads) --> thread blocks. Average speedup: SparseRT: 1.86x, Sputnik: 1.78x
. = SparseRT = Sputnik cuBLAS —SparseRT —Sputnik ——cuBLAS
: : , _— : « The most important operations for CNN inference: convolution and 216678 -
* As a result of pruning, CNNs in real-life applications can be highly i P ; dp' hread block ut : be vi q L
sparse (with at least 70% sparsity) without much accuracy loss. pooling are performed in thread blocks, convolution can be viewed as 20000 185584 500
sparse matrix-matrix multiplication (SpMM). 16143 =
—_ 14042.4 £ 20000
» GPUs cannot natively support sparse matrix calculations, sparse 2 '1%f64.95 11255.65 11399 g
. . . . 5 . 10799.1 10470.23~___ 8 15000
matrices are treated as dense matrices during computation. i % 895646 gsoer S
3. Research Question £ g
« To take advantage of the sparsity in CNNs and accelerate . . . 5000
inference, many methods are proposed, but there lacks a What is the recent literature on exploiting sparse CNNs on
systematic summary and comparison for them. GPUs? 0 1 L e s .
. (128, 64,3136) (128, 128,3136) (256,128,784) (256, 256, 784) (512, 256, 196) (512,512,196) (1024, 512,49) (1024, 1024, 49)
» Write a short summary that lists all the libraries sparsity Matrix shape
» Benchmark them on the Jetson Nano Figure 8: Runtime for SpMM with different sparsity Figure 9: Runtime for SpMM with different dimensions (M, K, N), (M, K) is the
dimension of the filter, (K, N) is the dimension of the input
4. Methods « TensorRT: Inference using « Conv_Pool_Algorithm: convolution and pooling
» Summarize the sparse CNN accelerators: TensorRT [1], SparseRT [2], Sputnik [3], Conv_Pool_Algorithm [4], and MinkowskiEngine [5] TrafficCamNet and KITTI object for different layers of VGG-19 speedup compared
detection dataset to cuDNN using dataset from ImageNet
(1) TensorRT: 2:4 fine-grained sparsity for weight sparsity (50% (2) Sparse RT: unstructured weight sparsity, tiling and load balancing for the sparse Average speedup: ECR: 16.63x, PECR: 17.61x
sparsity), sparse matrix is stored in a compressed format matrix are computed at compile time and used as a part of the code Unpruned | Unpruned Pruned w/ 00 o
iti 80%
a a Condition | wio W | TensorRT| . ~
Sparse matrix W Compressed matrix W Ko M[0:32] M(32:64] M([480:512] K0 Mo KI Mo K15 MO TensorRT | TensorRT z 70%
K1 M[0:32] M[32:64] M[480:512] ' Vodel % 25.00 o
KO M31 K1 M3l KIS M3l) 44.32MB | 44.32MB | 5.2MB N ~
K3055 M[0:32] M[32:64] M[480:512] size g2°-°° A 0% 2
b K3040 MO K3041 MO K3055 MO Speedup 1x 1.15x 1.21x gls 00~ - 0% &
KO M[0:36] M[36:63] ... M[485:512] a 300
K1 MJ[0:36] M[36:63] ... M[485:512] K3040 M31 K3041 M31 K3055 M31 Accuracy 84% 84% 84% 2 1000
b _ 2 20%
\ K3055 M[0:36] M[36:63] ... M[485:512] Table 1: Inference result for TrafficCamNet under 5.00 10%
—C2 = 4==bC KO M0 K1 MO K15 Mo different settings
onzero Figure 2: Thread block level load balancing [2] KO MIS S 22 5 ¢ 7 5 5 0 m 2 s omsow
)) . . K3054 M1 _
Figure 1: Structurzd sparse ma_trlx W, and its T e Convolution Layers _
compressed representation. [1] T = ——ECRspeedup ——PECR speedup ——sparsity
Figure 3: Thread group level load balancing [2] Figure 10 sparsity and speedup for conv_pool_algorithm, red line
separates the feature maps with the same sizes
(3) Sputnik: unstructured weight sparsity, tiling and load (4) Conv_Pool_Algorithm: feature map sparsity, stores only non-zeros with (5) MinkowskiEngine:
balancing to solve share memory load bottleneck their kernel values and indices and combines convolution and pooling feature map sparsity,
Subwarp Thing stores the coordinates of I I I
HHHW?E){H’{” ‘Hio‘aiist o Rgver;eOﬁsetMemt:::Alignmgnt - :r__;__;__l_s__;__;__] . Non-zeros and pairs them 6- COnCIUS|OnS and DISSCUSSIO“
— - I - :3—y° . R z o folmlo with the output » TensorRT, Conv_Pool_Algorhithm and MinkowskiEngine all proposed a way to compress the matrices and
1 — o ‘ 5"‘“"5& s EC O ICH =1 A e 3 e i coordinates to generate only stores non-zero values. TensorRT can accelerate CNN inference with 50% sparsity without accuracy
' i ——— ol o — m{ o [o][00 ! ENEND kernel maps loss, Conv_Pool_Algorithm can achieve high speedup for convolution and pooling.
(a) Subwarp tiling maps subsets of a warp to (b) Reverse offset memory alignment backs up the el i 0o |1]o0 |
independent 1-dimensional tiles of the output. address of each row to the nearest aligned address | Komnel | - .
’ ’ == l__/__L_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_' » SparseRT and Sputnik both aims to accelerate weight sparsity by using tiling and load balancing and the

Figure 4: Subwarp tiling and ROMA [3]

speedup is higher when the sparsity is higher. SparseRT performs better for smaller-size filters, and Spunik is

CWl cwz

! :
158 [2s]8 ko 1|o0]1]0] - o
Row Swicle Losd Saancing B - w7 o GEECEEEEREEEE ST e TERIrCnES

0 [] 0| +— | | .
o) P I — Figure 6: ECR storage format [4] wier TR Te T[T e o] « Sputnik only achieves a high speedup when the matrix is highly sparse. More experiments are needed to
‘_5: %f X/ come [4] analyze which step of the SpMM is slowing down the performance.
i | o | Figure 7: PECR storage format [4] _ _ _ _ _
E = ; BN | » For Conv_Pool_Algorithm, sparsity shows no effect on the speedup, more experiments using matrices of the

. . . same dimension but different sparsity could provide more information on this observation.
Figure 5: Row swizzle [3]

 Benchmark the reviewed methods to show the speedup they achieve: RTX 3080 with Ubuntu 18.04, CUDA 11.4, cuDNN 8.2, and Python 3.6.9 « Due to the low compatibility of the libraries, using the libraries on end-to-end models inference is infeasible, a
program to convert the models and their input to the format each library supports needs to be developed.

SparseRT and Sputnik TensorRT (v8.0 and above) Conv_Pool_Algorithm

7. References

Benchmarked using VGG-19 and ImageNet for [1] "Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT". [Online]. Available:

. . . . https://developer.NVIDIA.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
convolution and pOOIIng of an entire Iayer for runtime [2] Z. Wang, "SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference", arXiv:2008.11849, 2020.

and speedup [3] T. Gale, M. Zaharia, C. Young, E. Elsen, "Sparse GPU Kernels for Deep Learning", arXiv preprint arXiv: 1902.10901, 2020.

[4] W. Xu, S. Fan, H. Yu, X. Fu, "Accelerating convolutional neural networks by exploiting sparsity on GPUs", arXiv preprint arXiv:1909.09927, 2019.

[5] C. Choy, J. Gwak and S. Savarese, "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks," 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 3070-3079, doi: 10.1109/CVPR.2019.00319.

Benchmarked on SpMM using different matrix Benchmarked using TrafficCamNet (based on
dimensions and sparsity levels for runtime and speedup | ResNet-18) running inference for speedup and accuracy

	Poster
	Page 1

