
Review and Benchmark of sparse CNNs on GPU
Author: Qilin Chen Supervisor: Hasan Mohamed Responsible Professors: Shih-Chii Liu, Nergis Tomen

1. Introduction

3. Research Question
What is the recent literature on exploiting sparse CNNs on
GPUs?

- Write a short summary that lists all the libraries
- Benchmark them on the Jetson Nano

- Pruning is often applied to Convolution neural networks (CNNs) to
reduce the computation and memory cost for training and
inference.

- As a result of pruning, CNNs in real-life applications can be highly
sparse (with at least 70% sparsity) without much accuracy loss.

- GPUs cannot natively support sparse matrix calculations, sparse
matrices are treated as dense matrices during computation.

- To take advantage of the sparsity in CNNs and accelerate
inference, many methods are proposed, but there lacks a
systematic summary and comparison for them.

4. Methods
- Summarize the sparse CNN accelerators: TensorRT [1], SparseRT [2], Sputnik [3], Conv_Pool_Algorithm [4], and MinkowskiEngine [5]

5. Results

7. References
[1] "Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT". [Online]. Available:
https://developer.NVIDIA.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
[2] Z. Wang, "SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference", arXiv:2008.11849, 2020.
[3] T. Gale, M. Zaharia, C. Young, E. Elsen, "Sparse GPU Kernels for Deep Learning", arXiv preprint arXiv: 1902.10901, 2020.
[4] W. Xu, S. Fan, H. Yu, X. Fu, "Accelerating convolutional neural networks by exploiting sparsity on GPUs", arXiv preprint arXiv:1909.09927, 2019.
[5] C. Choy, J. Gwak and S. Savarese, "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks," 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 3070-3079, doi: 10.1109/CVPR.2019.00319.

6. Conclusions and Disscussion

- Benchmark the reviewed methods to show the speedup they achieve: RTX 3080 with Ubuntu 18.04, CUDA 11.4, cuDNN 8.2, and Python 3.6.9

(1) TensorRT: 2:4 fine-grained sparsity for weight sparsity (50%
sparsity), sparse matrix is stored in a compressed format

Figure 1: Structured sparse matrix W, and its
compressed representation. [1]

(2) Sparse RT: unstructured weight sparsity, tiling and load balancing for the sparse
matrix are computed at compile time and used as a part of the code

(3) Sputnik: unstructured weight sparsity, tiling and load
balancing to solve share memory load bottleneck

(4) Conv_Pool_Algorithm: feature map sparsity, stores only non-zeros with
their kernel values and indices and combines convolution and pooling

(5) MinkowskiEngine:
feature map sparsity,
stores the coordinates of
non-zeros and pairs them
with the output
coordinates to generate
kernel maps

Figure 2: Thread block level load balancing [2]

Figure 3: Thread group level load balancing [2]

Figure 4: Subwarp tiling and ROMA [3]

Figure 5: Row swizzle [3]

Figure 6: ECR storage format [4]

- TensorRT, Conv_Pool_Algorhithm and MinkowskiEngine all proposed a way to compress the matrices and
only stores non-zero values. TensorRT can accelerate CNN inference with 50% sparsity without accuracy
loss, Conv_Pool_Algorithm can achieve high speedup for convolution and pooling.

- SparseRT and Sputnik both aims to accelerate weight sparsity by using tiling and load balancing and the
speedup is higher when the sparsity is higher. SparseRT performs better for smaller-size filters, and Spunik is
better for larger ones.

- Sputnik only achieves a high speedup when the matrix is highly sparse. More experiments are needed to
analyze which step of the SpMM is slowing down the performance.

- For Conv_Pool_Algorithm, sparsity shows no effect on the speedup, more experiments using matrices of the
same dimension but different sparsity could provide more information on this observation.

- Due to the low compatibility of the libraries, using the libraries on end-to-end models inference is infeasible, a
program to convert the models and their input to the format each library supports needs to be developed.

Figure 7: PECR storage format [4]

SparseRT and Sputnik TensorRT (v8.0 and above) Conv_Pool_Algorithm

Benchmarked on SpMM using different matrix
dimensions and sparsity levels for runtime and speedup

Benchmarked using TrafficCamNet (based on
ResNet-18) running inference for speedup and accuracy

Benchmarked using VGG-19 and ImageNet for
convolution and pooling of an entire layer for runtime

and speedup

2. Background
- The structure of modern GPUs is as follows: thread (with private

register and access to the constant cache) --> thread groups (a warp
of 32 threads) --> thread blocks.

- The most important operations for CNN inference: convolution and
pooling are performed in thread blocks, convolution can be viewed as
sparse matrix-matrix multiplication (SpMM).

Figure 8: Runtime for SpMM with different sparsity

- SparseRT and Sputnik: time and speedup to perform SpMM compared to cuBLAS
 Average speedup: SparseRT: 1.86x, Sputnik: 1.78x

Figure 9: Runtime for SpMM with different dimensions (M, K, N), (M, K) is the
dimension of the filter, (K, N) is the dimension of the input

Condition
Unpruned

w/o
TensorRT

Unpruned
w/

TensorRT

Pruned w/
TensorRT

Model
size

44.32MB 44.32MB 5.2MB

Speedup 1x 1.15x 1.21x

Accuracy 84% 84% 84%

- TensorRT: Inference using
TrafficCamNet and KITTI object
detection dataset

Table 1: Inference result for TrafficCamNet under
different settings

Figure 10 sparsity and speedup for conv_pool_algorithm, red line
separates the feature maps with the same sizes

- Conv_Pool_Algorithm: convolution and pooling
for different layers of VGG-19 speedup compared
to cuDNN using dataset from ImageNet

 Average speedup: ECR: 16.63x, PECR: 17.61x

	Poster
	Page 1

