Review and Benchmark of sparse CNNs on GPU

Supervisor: Hasan Mohamed Author: Qilin Chen

1. Introduction

- Pruning is often applied to Convolution neural networks (CNNs) to reduce the computation and memory cost for training and inference.
- As a result of pruning, CNNs in real-life applications can be highly sparse (with at least 70% sparsity) without much accuracy loss.
- GPUs cannot natively support sparse matrix calculations, sparse matrices are treated as dense matrices during computation.
- To take advantage of the sparsity in CNNs and accelerate inference, many methods are proposed, but there lacks a systematic summary and comparison for them.

2. Background

- The structure of modern GPUs is as follows: thread (with private register and access to the constant cache) --> thread groups (a warp of 32 threads) --> thread blocks.
- The most important operations for CNN inference: convolution and pooling are performed in thread blocks, convolution can be viewed as sparse matrix-matrix multiplication (SpMM).

3. Research Question

What is the recent literature on exploiting sparse CNNs on GPUs?

- · Write a short summary that lists all the libraries
- · Benchmark them on the Jetson Nano

4. Methods

Summarize the sparse CNN accelerators: TensorRT [1], SparseRT [2], Sputnik [3], Conv_Pool_Algorithm [4], and MinkowskiEngine [5]

(1) TensorRT: 2:4 fine-grained sparsity for weight sparsity (50% sparsity), sparse matrix is stored in a compressed format

(2) Sparse RT: unstructured weight sparsity, tiling and load balancing for the sparse matrix are computed at compile time and used as a part of the code

а					
Κ	.0	M[0:32]	M[32:64]		M[480:512]
Κ	1	M[0:32]	M[32:64]		M[480:512]
K	3055	M[0:32]	M[32:64]		M[480:512]
b					
Κ	.0	M[0:36]	M[36:63]		M[485:512]
K	1	M[0:36]	M[36:63]		M[485:512]
K	3055	M[0:36]	M[36:63]		M[485:512]
Figure 2: Thread block level load balancing [2]					

u	Thread Group 0	Thread Group 1		T
	K0 M0	K1 M0		KI
	K0 M31	K1 M 31		KI
	K3040 M0	K3041 M0		K3
	K3040 M31	K3041 M31		K3
h				
b	Thread Group 0	Thread Group 1		Tł
b	Thread Group 0 K0 M0	Thread Group 1 K1 M0		TI Ki
b	Thread Group 0 K0 M0 K0 M15	Thread Group 1 K1 M0	···	TI Ki
b	Thread Group 0 K0 M0 K0 M15	Thread Group 1 K1 M0 	 	TI Ki Ki
b	Thread Group 0 K0 M0 K0 M15 K200 M25	Thread Group 1 K1 M0 K380 M27	••• ••• •••	TI Ki Ki
b	Thread Group 0 K0 M0 K0 M15 K200 M25 K200 M31	Thread Group 1 K1 M0 K380 M27 K380 M29	··· ··· ··· ···	TI Ki Ki

Figure 3: Thread group level load balancing [2]

(3) Sputnik: unstructured weight sparsity, tiling and load balancing to solve share memory load bottleneck Subwarp Tiling

Figure 5: Row swizzle [3]

(5) MinkowskiEngine: feature map sparsity, stores the coordinates of non-zeros and pairs them with the output coordinates to generate kernel maps

Figure 7: PECR storage format [4]

• Benchmark the reviewed methods to show the speedup they achieve: RTX 3080 with Ubuntu 18.04, CUDA 11.4, cuDNN 8.2, and Python 3.6.9

SparseRT and Sputnik	TensorRT (v8.0 and above)	Conv_Pool_Algorithm
Benchmarked on SpMM using different matrix dimensions and sparsity levels for runtime and speedup	Benchmarked using TrafficCamNet (based on ResNet-18) running inference for speedup and accuracy	Benchmarked using VGG-19 and ImageNe convolution and pooling of an entire layer for r and speedup

5. Results

read Group 15 15 M0 5 M31

3055 M0 3055 M31

ad Group 1 54 MT

TensorRT: Inference using TrafficCamNet and KITTI object detection dataset

Condition	Unpruned w/o TensorRT	Unpruned w/ TensorRT	Pruned w/ TensorRT
Model size	44.32MB	44.32MB	5.2MB
Speedup	1x	1.15x	1.21x
Accuracy	84%	84%	84%

Table 1: Inference result for TrafficCamNet under different settings

Conv_Pool_Algorithm: convolution and pooling for different layers of VGG-19 speedup compared to cuDNN using dataset from ImageNet Average speedup: ECR: 16.63x, PECR: 17.61x

Figure 10 sparsity and speedup for conv_pool_algorithm, red line separates the feature maps with the same sizes

6. Conclusions and Disscussion

- TensorRT, Conv Pool Algorhithm and MinkowskiEngine all proposed a way to compress the matrices and only stores non-zero values. TensorRT can accelerate CNN inference with 50% sparsity without accuracy loss, Conv Pool Algorithm can achieve high speedup for convolution and pooling.
- SparseRT and Sputnik both aims to accelerate weight sparsity by using tiling and load balancing and the speedup is higher when the sparsity is higher. SparseRT performs better for smaller-size filters, and Spunik is better for larger ones.
- Sputnik only achieves a high speedup when the matrix is highly sparse. More experiments are needed to analyze which step of the SpMM is slowing down the performance.
- For Conv Pool Algorithm, sparsity shows no effect on the speedup, more experiments using matrices of the same dimension but different sparsity could provide more information on this observation.
- Due to the low compatibility of the libraries, using the libraries on end-to-end models inference is infeasible, a program to convert the models and their input to the format each library supports needs to be developed.

7. References

[1] "Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT". [Online]. Available: https://developer.NVIDIA.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/ [2] Z. Wang, "SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference", arXiv:2008.11849, 2020. [3] T. Gale, M. Zaharia, C. Young, E. Elsen, "Sparse GPU Kernels for Deep Learning", arXiv preprint arXiv: 1902.10901, 2020. [4] W. Xu, S. Fan, H. Yu, X. Fu, "Accelerating convolutional neural networks by exploiting sparsity on GPUs", arXiv preprint arXiv:1909.09927, 2019. [5] C. Choy, J. Gwak and S. Savarese, "4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3070-3079, doi: 10.1109/CVPR.2019.00319.