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1.  Introduction

3. Research Question
What is the recent literature on exploiting sparse CNNs on 
GPUs?

- Write a short summary that lists all the libraries
- Benchmark them on the Jetson Nano

- Pruning is often applied to Convolution neural networks (CNNs) to 
reduce the computation and memory cost for training and 
inference.

- As a result of pruning, CNNs in real-life applications can be highly 
sparse (with at least 70% sparsity) without much accuracy loss.

- GPUs cannot natively support sparse matrix calculations, sparse 
matrices are treated as dense matrices during computation.

-  To take advantage of the sparsity in CNNs and accelerate 
inference, many methods are proposed, but there lacks a 
systematic summary and comparison for them.

4. Methods
- Summarize the sparse CNN accelerators: TensorRT [1], SparseRT [2], Sputnik [3], Conv_Pool_Algorithm [4],  and MinkowskiEngine [5]

5. Results
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6. Conclusions and Disscussion

- Benchmark the reviewed methods to show the speedup they achieve: RTX 3080 with Ubuntu 18.04, CUDA 11.4, cuDNN 8.2, and Python 3.6.9

(1) TensorRT: 2:4 fine-grained sparsity for weight sparsity (50% 
sparsity), sparse matrix is stored in a compressed format

Figure 1: Structured sparse matrix W, and its 
compressed representation.  [1]

(2) Sparse RT:  unstructured weight sparsity, tiling and load balancing for the sparse 
matrix are computed at compile time and used as a part of the code

(3) Sputnik: unstructured weight sparsity, tiling and load 
balancing to solve share memory load bottleneck

(4) Conv_Pool_Algorithm: feature map sparsity, stores only non-zeros with 
their kernel values and indices and combines convolution and pooling

(5) MinkowskiEngine: 
feature map sparsity, 
stores the coordinates of 
non-zeros and pairs them 
with the output 
coordinates to generate 
kernel maps

Figure 2: Thread block level load balancing [2]

Figure 3: Thread group level load balancing [2]

Figure 4: Subwarp tiling and ROMA [3]

Figure 5: Row swizzle [3]

Figure 6: ECR storage format [4]

- TensorRT, Conv_Pool_Algorhithm and MinkowskiEngine all proposed a way to compress the matrices and 
only stores non-zero values. TensorRT can accelerate CNN inference with 50% sparsity without accuracy 
loss, Conv_Pool_Algorithm can achieve high speedup for convolution and pooling. 

- SparseRT and Sputnik both aims to accelerate weight sparsity by using tiling and load balancing and the 
speedup is higher when the sparsity is higher. SparseRT performs better for smaller-size filters, and Spunik is 
better for larger ones.

- Sputnik only achieves a high speedup when the matrix is highly sparse. More experiments are needed to 
analyze which step of the SpMM is slowing down the performance.

- For Conv_Pool_Algorithm, sparsity shows no effect on the speedup, more experiments using matrices of the 
same dimension but different sparsity could provide more information on this observation.

- Due to the low compatibility of the libraries, using the libraries on end-to-end models inference is infeasible, a 
program to convert the models and their input to the format each library supports needs to be developed.

Figure 7: PECR storage format [4]

SparseRT and Sputnik TensorRT (v8.0 and above) Conv_Pool_Algorithm

Benchmarked on SpMM using different matrix 
dimensions and sparsity levels for runtime and speedup

Benchmarked using TrafficCamNet (based on 
ResNet-18) running inference for speedup and accuracy

Benchmarked using VGG-19 and ImageNet for 
convolution and pooling of an entire layer for runtime 

and speedup

2. Background
- The structure of modern GPUs is as follows: thread (with private 

register and access to the constant cache) --> thread groups (a warp 
of 32 threads) --> thread blocks.

- The most important operations for CNN inference: convolution and 
pooling are performed in thread blocks, convolution can be viewed as 
sparse matrix-matrix multiplication (SpMM).

Figure 8: Runtime for SpMM with different sparsity

- SparseRT and Sputnik: time and speedup to perform SpMM compared to cuBLAS 
   Average speedup: SparseRT: 1.86x, Sputnik: 1.78x

Figure 9: Runtime for SpMM with different dimensions (M, K, N), (M, K) is the 
dimension of the filter, (K, N) is the dimension of the input

Condition
Unpruned 

w/o 
TensorRT

Unpruned 
w/ 

TensorRT

Pruned w/ 
TensorRT

Model 
size

44.32MB 44.32MB 5.2MB

Speedup 1x 1.15x 1.21x

Accuracy 84% 84% 84%

- TensorRT: Inference using 
TrafficCamNet and KITTI object 
detection dataset

Table 1: Inference result for TrafficCamNet under 
different settings

Figure 10 sparsity and speedup for conv_pool_algorithm, red line 
separates the feature maps with the same sizes

- Conv_Pool_Algorithm: convolution and pooling 
for different layers of VGG-19 speedup compared 
to cuDNN using dataset from ImageNet

   Average speedup: ECR: 16.63x, PECR: 17.61x
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