Investigating Body Gestures as Means of Input Modalities in Microtask Crowdsourcing

Authors

András Artúr Ajanidisz

Supervisers: Ujwal Gadiraju, Garret Allen

"I closely follow everything about user interface or human-computer interface: technology that makes computers closer to the way the human being actually functions." — Francois-Henri Pinault

1. Background

- Microtask workers often spend hours in front of a computer using a keyboard and mouse.
- Thus, they are prone to musculoskeletal disorders
- Exercise helps to remedy these disorders
- Low-intensity exercises can be mimicked by body movements, making them good for health.
- As a result, incorporating gesutral input into microtasking may enhance worker well-being.

4. Methodology

- Literature review:
 - Microtask taxonomies
 - Gesture taxonomies
 - Gesture recognition technologies
 - > Health problems of computer work and their exercise based treatment
- Qualitative literature analysis:
 - To select appropriate gesture recognition technology
 - To select applicable microtask workflow elements
 - To develop criteria for suitable gestures and devise gestures that have health benefits
- Survey on the bases of literature analysis:
 - To evaluate the usability of 12 gestures for four workflow elements
 - Gestures were rated on a 7-point likert scale based on three criteria: ease of use, tolerance for error, effectiveness
 - The scores were combined into an overall usability score for each gesture
 - Prolific was used to recruit participants (N=10)
 - Webcam based gesture control were employed
 - The participants were shown webcam recordings of a person performing the gestures to experience the use of gesture control in microtasking vicariously
- Finally, effective gestural input options in the form of gesture-command dictionaries were determined.

8. Future Work

- Potential advancements in this research:
 - Increase the sample size to increase statistical power
 - Quantify the health impact of gestures
 - To evaluate effectiveness, combine health impact scores with usability
 - Use real gestural interfaces to collect objective usability data on gestures and improve the reliability of subjective assessment
- The primary contribution of this study is the establishment of new research directions. We recommend exhaustively investigating the health-improving potential of gestural input not only in microtasking but in all humancomputer interaction.

2. Research Question

In terms of health benefits and usability, what gestures of the body serve as an effective form of input for crowd-sourced micro-tasks?

5. Results

- N=10 responses were received
- Participants aged 18-25 (80%), 25-30 (10%), 50-60 (10%) with an average of 1-2 years of experience in crowdsourcing
- Gestures were ranked and compared for each workflow element based on usability scores. See the charts for the results.

- The usability ranking of gestures
 - for answering yes or no: G1.1, G1.2, G1.3
 - for submitting answers: G2.1, G2.3, G2.2
- for marking answers in ab MC questions: G3.3, G3.2, G3.1
- for scrolling: G4.2, G4.1, G4.3
- Continuous gestures have been found to be more usable than discrete ones.
- Dynamically preferred over static ones.
- Gestures involving the hands, fingers, and arms are perceived to be more usable than gestures involving head, eye, and torso movements.

Terminology

Microtask crowdsourcing: the practice of decomposing a large-scale task into numerous, small, and quick microtasks that are then distributed to an unidentified, large group of workers.

Body gesture: a form of nonverbal communication in which physical movements communicate particular messages <u>Dynamic gesture</u> : gesture in which meaning is conveyed through motion of body parts Static gesture: gesture in which meaning is conveyed through the inclination or rotation of body parts Discrete gesture: gestures that automatically associate a change in the system with the entire gesture Continuous gesture: gestures that yield data that is mapped at each time instant to a state change in the system.

3. Objective

- Create a set of criteria for usable gestures.
- Discover and present gestures that are effective input in microtasking for future projects.
- Encourage projects and additional research into the use of effective body gestures as input in microtask crowdsourcing and in all HCI

6. Discussion

- Since effectiveness conveys both usability and health benefits, the usability ranking is not insufficient to tell which gestures are the most effective
- Three gesture-command dictionaries were presented based on the survey results.
- Since health impacts were not quantified in this study, we assumed equal health benefits for all gestures.
- Thus, when comparing individual gestures, higher usability scores correspond to greater effectiveness
- However, by placing less emphasis on usability, gesture-command dictionaries were created to remedy a wide range of bodily discomforts. • These combinations of gestures serve as effective input in microtasking:
- G1.1-G2.1-G3.2-G4.2
 - G1.1-G2.1-G3.3-G4.1
 - G1.1-G2.3-G3.3-G4.3

7. Limitations

- The applicability of our results is limited to the populations of the OECD countries due to Prolific's availability
- Statistical power issues, inability to generalize results due to small sample size of N = 10
- Limited prior research on microtask workflows and taxonomies. • Due to the lack of a true gesture control system, there is a lack of
- objective usability data. Participants evaluated gestures after imitating what they saw in the recordings.
- Due to time and budget constraints, no other viable gesture recognition technology was thoroughly investigated. • The health benefits of gestures are not supported by substantial
- evidence.
- Since the health effects of gestures were not quantified, all gestures were assumed to be equally health promoting.

References

Affiliations

Delft University of Technology

[1] https://docs.google.com/document/d/1NIKPzx1WwP2ZMG3kN5E28Lr-V9SF7vXnA_6gvARqp1g/edit?usp=sharing