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1 Background
Alzheimers Disease (AD)

Heterogeneous - manifestations, progressions, and
underlying pathologies can vary between patients [2]
Understanding of causes and effects of these variations is
limited

Techniques
Single Cell RNA Sequencing (scRNA-seq or transcriptomics)
measures messenger RNA levels in tissue at the cell level to
quantify gene activity and provide a snapshot of cell state.
Data is high dimensional, sparse, and noisy.
Differential Gene Expression (DGE) is a statistical method to
find geneswho’s expression differ significantly between groups
(DEGs). These may also be referred to as ”markers” or ”marker
genes”.

Related Work
Clustering scRNA-seq data has revealed multiple disease as-
sociated subgroups of cells with distinct transcriptional signa-
tures [3].
Attempts to discover sample (individual) level subtypes have
clustered samples directly [4] or used cell-subgroup propor-
tions as sample representations for disease trajectory analysis
[2].
Foundation Models like Geneformer [1] (GF) learn dense cell
representations through self-supervised pretraining on mas-
sive unlabeled scRNA-seq data. GF cell embeddings demon-
strate SOTA performance for various downstream tasks but
their applications to disease subtype identification are under-
explored.

Dataset - ROSMAP
We use transcriptomic data from the Religious Orders Study
and Memory and Aging Project. Contains samples from pre-
frontal cortex of 426 individuals with varying levels of cognitive
decline. 2.5M cells x 30k genes.

2 Research Question
“To what extent does the latent space
learned by self-supervised scRNA-seq
foundation models enable the
discrimination and charecterization of AD
subtypes?”
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3 Results

Figure 1: Embedding spaces and clustering on Immune Cells.
Embeddings are generated with Geneformer [1] and by applying
PCA. Enrichment for AD is tested using fisher’s exact test and
benjamini-hochberg correction.
1.A: UMAP of PCA embeddings 1.B: UMAP of GF embeddings.1.C:
Nr. of AD enriched clusters vs method 1.D: Mean fold enrichment
vs method
Figure 2: Astrocyte cluster DEGs filtered for known AD markers.
DGE on clusters should yield markers characteristic of known AD
associated astrocyte subgroups
2.A, 2.C: GF - 39 & 52 clusters 2.B, 2.D: PCA - 35 & 62 clusters

Figure 3: AD subgroup DEGs filtered for known AD markers. Sample representations are
constructed from GF cluster proportions and ROSMAP cell-subtype proprotions (Baseline).
Initial exploration of all samples revealed low seperation between AD and non AD proportions.
Proportions are filtered to only include AD samples, clustering applied, and DGE performed vs
other AD clusters. Meaningful subtypes should yield markers known to be associated with AD.
3.A, 3.B: ROSMAP cell-subtype proportions. 4 & 6 subgroups.
3.C, 3.D: GF cluster proportions. 6 & 4 subgroups.

4 Conclusions
GF embeddings show stronger cell type seperation
than PCA after applying UMAP (F:1.A,1.B)
Clustering GF embeddings yields more AD
enriched clusters and slightly higher mean fold
enrichment levels than PCA (F:1.C,1.D). Fold
enrichment levels of 1̃.0-1.3 suggests low
separation between AD and non AD cells.
DGE on astrocyte clusters does not identify
clusters corresponding to known AD associated
subgroups for GF or PCA embeddings. We
especially look for upregulation of CD44, GFAP,
SPP1, LCN2, C3, & CLU and downregulation of
SLC1A2 & ALDH1L1. GF clusters are enriched for a
partial set but lack presense of SPP1, LCN2, & C3.
SLC1A2 & ALDH1L1 are enriched but upregulated
(F:2.A,2.C). PCA yields stronger results with
enrichment of more ’secondary’ genes and
downregulation of SLC1A2 & ALDH1L1 but key
genes are still unenriched (F:2.B,2.D).
DGE on AD sample proportion clusters reveals
transcriptional differences between clusters
known to be associated with AD. Clusters are well
separated with distinct DEGs. GF cluster
proportions seem to outperform ROSMAP cell
subtype proportions with higher logFC scores but
further investigation is required.
In conclusion, we find that the latent space
learned by Geneformer does not seperate AD
cells from controls, that applying clustering
directly to cell embeddings does not yield known
AD subgroups, but that GF cluster proportions
may have potential for downstream applications.
Identifying AD subtypes from the latent space
learned by Foundation Models could not be
accomplished through straightforward methods
and further research is required.

5 Limitations & Future
Work
Further analysis of the identification of known AD
associated subtypes of cells is required. More
cell types should be considered.
DGE at sample level could only be performed for
a subset of cells. Our results are indicative but
not exhaustive

Direct Sample Embeddings could be generated
using graph based sample embedding methods
[5] adapted with contrastive graph pooling
objectives.
Multi-Omics Approaches could integrate other
omic subgroup proportions into sample level
analysis.
Sample Level Clustering implementations could
be developed, published, optimized for large
datasets, and applied.
Disease Specific Fine Tuning may yield a latent
space better associated with disease subtypes.
Disease Trajectory Analysis (or other advanced
methods) could be applied. The latent space
could lend itself to such a spatial analysis.
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