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Introduction

Reinforcement Learning from Human Feedback (RLHF) [1] is
a variant of reinforcement learning (RL) that learns from hu-
man feedback instead of relying on a predefined reward function.
RLHF typically involves two main phases: reward learning and
RL training. During reward learning, human feedback is used
to train a reward model, which is then employed in conventional
RL algorithms. Various feedback types can be used, including
numeric scores, rankings, and corrections. This research provides
an empirical comparative analysis of different feedback types in
RLHF systems, highlighting trade-offs and demonstrating how
various feedback types found in the literature can be practically
implemented.

Background

To train the reward model with a given feedback type, an appro-
priate loss function must be specified. We opted for trajectories
(multiple state-action pairs) as our feedback granularity and se-
lected three representative feedback types for this research.
Scalar Feedback [2] involves a human teacher assigning nu-
merical ratings to trajectories. The precision of Scalar Feedback
comes at a cost, as it’s challenging for humans to quantify re-
wards accurately and demands more cognitive effort [3]. The
loss function is the Mean Squared Error (MSE) between the pre-
dicted reward and the scalar value:
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Preference Feedback [1] requires indicating the preferred tra-
jectory from a pair. This is the most popular feedback type for
RLHF [3]. A preference predictor using the reward model r̂θ is
defined as:
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We update r̂θ by minimizing the standard binary cross-entropy
objective:

LBCE(θ, D) = − 1
|D|

∑
(σ0,σ1,y)∈D

(1 − y) log Pθ(σ0 > σ1) + y log Pθ(σ1 > σ0)


(3)
Preference Feedback is easier for humans to provide than Scalar
Feedback, but it conveys less information and only indicates tra-
jectory preference [3].
Marginal Preference Feedback [4] conveys more informa-
tion than Preference Feedback by quantifying the extent of pref-
erence for one trajectory over another. The idea is to include
a margin to use additional information on preference intensity,
training the reward model to assign distinct scores to trajectories
with greater differences. The loss function remains unchanged,
but the preference predictor is updated to include the margin:
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The margin m(r) is a discrete function of the preference rating,
with larger margins for higher preference intensity and smaller
margins for lower intensity.

Methodology

The Imitation library [5] provides a framework for training re-
ward models with RLHF. It implements only Preference Feed-
back, using synthetic feedback instead of human feedback, ob-
tained by comparing ground-truth rewards from trajectory pairs.
Algorithm 1 Imitation library RLHF

1: Initialize reinforcement learning (RL) model πθ and reward model r̂θ
2: for i = 1, . . . , N do
3: Rollout trajectories using πθ
4: Generate queries from collected trajectories
5: Collect synthetic feedback for generated queries
6: Update r̂θ by minimizing the loss function on the queries and feedback
7: Train πθ using updated r̂θ
8: end for
9: Train a new RL model using the final learned reward model r̂θ

To support new feedback types, we modified the loss function
and query creation functions (steps 4-6 of Algorithm 1). We
extended the synthetic feedback gatherer by adding a numeric
preference strength indicator for Marginal Preference Feedback
and an option for Scalar Feedback with a single trajectory and
ground-truth reward.
Our adjustments can be summarized by the following steps:
1 We create an appropriate query for the selected feedback type

from rolled-out trajectories.
2 We define rules to give synthetic feedback on queries

(emulating human feedback) based on trajectories and their
ground-truth rewards.

3 We implement an appropriate loss function for each feedback
type.

We implemented a simplified RLHF setup using parts of the
Imitation library with Q-learning to validate our feedback types
and methods. We designed a custom Grid Environment (Figure
1a) for this evaluation. After this feasibility test, we conducted
experiments in Pendulum (Figure 1b) and CartPole (Figure 1c)
Gymnasium environments [6] using the Imitation library and
Proximal Policy Optimization (PPO) [7].

(a) Grid Environment (b) Pendulum (c) CartPole
Figure 1: Experimental Setup: Environments

We conducted empirical evaluations using three feedback types.
To ensure reproducibility, we set seeds for each evaluation. We
conducted five rounds of evaluations for each environment and
feedback type, using different seeds for each round, and averaged
the results during training and final reward reporting. Addition-
ally, to emulate human inaccuracy in providing Scalar Feedback,
we added noise in one experiment, as this feedback type is known
to be challenging for experts.

Results

All selected feedback types achieve maximum reward in the Sim-
ple Grid Environment. In contrast, a randomly initialized, un-
trained reward model performs poorly. We then evaluate our
feedback types on Pendulum and CartPole to highlight their
trade-offs. Our Pendulum findings persist in CartPole, but due
to sparser rewards, the plots are less representative. Pendulum
evaluations are included in this poster, while all evaluations and
comparative tables are available in the paper.
Scalar Feedback with ground-truth rewards achieves high per-
formance and low variance with even a small number of queries
(Figure 2).

Figure 2: Ground-Truth Scalar

Given the complexity of providing precise scalar evaluations,
Figure 3 shows results when the evaluator provides less accu-
rate scalars. This degrades performance with a small number
of queries, but the agent still reaches expert-level performance
with 100 and 200 queries, though with higher variance for fewer
queries.

Figure 3: Human-Simulated Scalar

We confirm that while Preference Feedback is easier for
humans to give, it conveys less information and requires more
queries for good performance, as shown in Figure 4.

Figure 4: Preference Feedback

Results

We also report high overall variance, as was the case with human-
simulated scalar feedback. However, while in Human-Simulated
Scalar Feedback, more queries led to lower variance, this is not
the case for Preference Feedback.

Figure 5: Marginal Preference Feedback

We observe in Figure 5 that Marginal Preference Feedback
leads to better performance and lower variance.

Conclusions

This empirical exploration investigated the integration and effec-
tiveness of different feedback types in RLHF. Our findings high-
light the trade-off between ease of providing feedback and the
amount of information conveyed [3]. These insights can assist in
developing RLHF systems, offering evidence for using different
feedback types based on specific needs. Exploring less common
feedback types can guide future studies. Future work could incor-
porate real human feedback and test more complex environments
to validate and expand these findings. Additionally, integrating
multiple feedback types in a single agent’s training presents an
intriguing avenue for research.
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