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Episodic Returns vs Steps During Training and Time Spent
Training per Algorithm on CARLA

Research Question - 1 Results - 4 160

« How does epsilon-greedy, random network distillation, bootstrapped DQN |Training (Fig. 1):
e Similar time needed to train

120
affect training and the robustness of final policies under various testing

conditions in autonomous driving?

« BDQN had higher episodic

returns

Background Information - 2
e Deep Q-Networks [2]

» Exploration vs Exploitation
» Exploration

> Epsilon-Greedy

> Random Network Distillation (RND): target network, predictor

network, intrinsic reward [1]

> Bootstrapped DQN (BDQN): value heads, bootstrapping, Thompson

sampling [3]
e Environments: CARLA, CarRacing

e RND performed worse than
expected - better on CarRacing

In the Three Different CARLA Maps
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Methodology - 3

» Implementations

- E-Greedy: epsilon decayed over time
> RND: DQN instead of PPO, episodic instead

of non-episodic, observation normalization

- BDQN: Masking distribution, Thompson
sampling are not used
 Training on CarRacing, CARLA

 Evaluating robustness on different CARLA maps

Figure 4: Image provided by gym-
carla [4]
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Exploration Methods

Figure 2: Mean Episodic Returns

e Town04 highest returns (Fig.
2) and highest standard
deviation (Fig. 3)

e RND with inferior ability to
learn

« BDQN outperformed E-
Greedy by: 55%, 22% and
7% on Town03, Town04 and
TownOS respectively (Fig. 2)
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Figure 1: Episodic Returns vs Steps

During Training
Evaluation:

« BDQN with highest returns
on all maps (Fig. 2)

« RND with lowest returns (Fig.
2) and highest standard
deviation (Fig. 3) on episodic
returns

Standard Deviations of Episodic Returns of the Three
Exploration Methods in the Different CARLA Maps
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Figure 3: Standard Deviation of Episodic Returns

Limitations - 5
« Hyperparameter tuning
» Training on different maps
e Training with different input (Lidar, camera)
 Evaluating on even more maps

 Allowing to train with more steps

e Implementation differences

Conclusion - 6
« BDQN clearly outperformed E-Greedy
» RND had issues learning on CARLA
> Implementation differences
> Limitations of experiment
 Train with more steps and optimize hyperparameters

» NoisyNets or Diversity-Driven Exploration
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