Protocol

Date:31.01.2025

Testing the “Fast Byzantine Consensus’

Author: Alexandra Carutasu <a.carutasuostudent.tudelft.nl>
Supervisors: Dr. Burcu Kulahcioglu Ozkan, Jodo M. Louro Neto

" 1 Introduction

e The “Fast Byzantine Consensus” protocol
(FaB) was introduced in 2006 by Martin
et al. [1].

e It is the first protocol to achieve
consensus in just two communication

" 2 Research Objective

The aim of this research was to evaluate ByzzFuzz’'s
performance as a testing framework. We devised the
following RQs:
1.Can ByzzFuzz find any bugs in the implementation of
the given protocol?
2.How does the bug detection performance of ByzzFuzz

~ 3 Methodology

e Implemented the “Fast Byzantine Consensus” protocol using ByzzBench,
adapted the implementation to a multi-shot consensus protocol.

e Ran experiments using the two testing methods: ByzzFuzz and baseline,
compared the performance of the two testing approaches.

e Tested the protocol using small-scope or any-scope mutations in ByzzFuzz.

steps under Byzantine assumptions. Client
e Abraham et. al uncovered a “bounded compare to a baseline testing method that arbitrarily S Tanasers \ /\ /
liveness” violation in their theoretical injects network and process faults? . \ - / \ / s
analysis of the protocol [2]; no other bugs 3.How do small-scope and- any-scope message mutations Acceptors
heve beendeiectiedi=inceier of ByzzFuzz compare in their performance of bug
Learners

detection for the given protocol?

Figure 1. Common case execution of our implementation of the Fast Byzantine Consensus multi-shot adaptation

" 4 Results

e Focused on testing the non-parametrized version of FaB.

e Ran the experiments under f =1, in a network with 6 nodes
and faults injected among r = 10 rounds of execution for
3000 scenarios.

2. How does the bug detection performance of ByzzFuzz
compare to a baseline testing method that arbitrarily injects
network and process faults?

e Using ByzzBench, we materialized the liveness violation
uncovered by Abraham. et al [2].

! Proposers !

timeout, new ; 2
| leaderis |Aﬂe: leader election, B is

e ByzzFuzz was more effective, identifying both disagreement Client | s :E*“‘“‘“"ﬂ“'ﬂd‘”—
.] PROPOSE("8", 1,null) (Election
1. Can ByzzFuzz find any bugs in our implementation of and liveness violations . awh @S messages) |
the FaB protocol? * The baseline method failed to detect any new liveness or e I, S I P T
3 . . meE;Z:;!; Iteacler is stuck, cannot
°® Yes’ Injectlng process and netWOrk faults durlng the aﬂy dlsagreemeﬂt VIOlatIOl'lS. B |)!r find a value to propose,
. . . ACCEPT("A" | | repLy(AY
e>'<ecut|on usmg ByzzFuzz uncovered both liveness and . # of viclations detected Jeteeton tate i \&r, |t |
disagreement violations. : |
p = 1’ n= 0 20 0.67% lwo—’mh 1.l : Eecton : /EPL‘({E?
B maxactions liveness] disagreement p=2,n=0 30 1.00% D e
3000 p=0,n=1 139 4.63% ! |
2980 2970 Fi 3. M ialzied bug i impl i f the Fast B ineC
T i 2797 e p=0,n=2 203 6.77% igure 3. Materialzied bug in ourlmp:g:::g[tlon of the Fast Byzantine Consensus
p=1,n=1 133 4.75% .
2000 : . 5 Conclusions
baseline 4 0.13%
1500 Table 1. ByzzFuzz and arbitrary fault injection comparison * ByZZFUZZ uncovered both liveness and dlsagreement
: erminations in our implementation.
1000 3. How do small-scope and any-scope message mutations of tB g SO RSUNE 12’- , et " & the baseline test
o . - []
— ByzzFuzz compare in their performance of bug detection for the YZZGMEZ Wiss ore eHeient £han the DAselne Lesting
7 3 155 - FaB protocol? method.
3 1 8 203 . . _ . “ . X
0 o s o o« i N e We reran ByzzFuzz for 1000 scenarios, alternating between * Small-scope mutations were more efficient in
& o & - & < small-scope and any-scope message mutations. uncovering disagreement violations in our
S Y S O O e e Small-scope mutations performed better, uncovering the implementation.
< R R < Q Q disagreement scenarios in our implementation . . .
Figure 2. ByzzFuzz execution results (p and n indicate the number of process and network . 6 L mi t a t 10N S
faults inj d :
A process faults liveness disagreement detection rate . ' . '

e We traced back the root cause of the violations to) . = — e Our implementation for handling of multi-shot
oversimplifications in our adaptation to the multi-shot small-scope - X 1% operations in the protocol is too simplistic, needs
consensus variant. 8 =7 enhacement.

e No bugs in the original protocol design were found. any-scope 1 S 0 0.5% e Refine ByzzBench’s liveness detection capabilities.

2 5 0 0.5%

[1] I. Abraham, G. Golan-Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P. Martin, “Revisiting fast practical byzantine fault
tolerance,” ArXiv, vol. abs/1712.01367,2017. [Online]. Available: https://api.semanticscholar.org/CorpusiD:7902429

[2] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,”|EEE Transactions on Dependable and Secure Computing, vol. 3,
no. 3, pp. 202-215, 2006

Table 2. Small-scope and any-scope mutations comparison

