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" 1 Introduction

e The “Fast Byzantine Consensus” protocol
(FaB) was introduced in 2006 by Martin
et al. [1].

e It is the first protocol to achieve
consensus in just two communication

" 2 Research Objective

The aim of this research was to evaluate ByzzFuzz’'s
performance as a testing framework. We devised the
following RQs:
1.Can ByzzFuzz find any bugs in the implementation of
the given protocol?
2.How does the bug detection performance of ByzzFuzz

~ 3 Methodology

e Implemented the “Fast Byzantine Consensus” protocol using ByzzBench,
adapted the implementation to a multi-shot consensus protocol.

e Ran experiments using the two testing methods: ByzzFuzz and baseline,
compared the performance of the two testing approaches.

e Tested the protocol using small-scope or any-scope mutations in ByzzFuzz.
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Figure 1. Common case execution of our implementation of the Fast Byzantine Consensus multi-shot adaptation

" 4 Results

e Focused on testing the non-parametrized version of FaB.

e Ran the experiments under f =1, in a network with 6 nodes
and faults injected among r = 10 rounds of execution for
3000 scenarios.

2. How does the bug detection performance of ByzzFuzz
compare to a baseline testing method that arbitrarily injects
network and process faults?

e Using ByzzBench, we materialized the liveness violation
uncovered by Abraham. et al [2].
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e We traced back the root cause of the violations to ) . = — e Our implementation for handling of multi-shot
oversimplifications in our adaptation to the multi-shot small-scope - X 1% operations in the protocol is too simplistic, needs
consensus variant. 8 =7 enhacement.

e No bugs in the original protocol design were found. any-scope 1 S 0 0.5% e Refine ByzzBench’s liveness detection capabilities.
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Table 2. Small-scope and any-scope mutations comparison



